
databay
Release 0.3.0

Voy Zan

Jun 21, 2021

CONTENTS

1 GitHub Page 3

2 Features 5

Python Module Index 73

Index 75

i

ii

databay, Release 0.3.0

Databay is a Python interface for scheduled data transfer.

It facilitates transfer of (any) data from A to B, on a scheduled interval.

CONTENTS 1

databay, Release 0.3.0

2 CONTENTS

CHAPTER

ONE

GITHUB PAGE

pip install databay

• Overview - Learn what is Databay.

• Examples - See Databay in use.

• Extending Databay - Use Databay in your project.

• API Reference - Read the API documentation.

3

databay, Release 0.3.0

4 Chapter 1. GitHub Page

CHAPTER

TWO

FEATURES

Simple, decoupled interface Easily implement data production and consumption that fits your needs.
Granular control over data transfer Multiple ways of passing information between producers and consumers.
Asyncio supported You can produce or consume asynchronously.
We’ll handle the rest Scheduling, startup and shutdown, exception handling, logging.
Support for custom scheduling Use your own scheduling logic if you like.

A simple example:

Data producer
inlet = HttpInlet('https://some.test.url.com/')

Data consumer
outlet = MongoOutlet('databay', 'test_collection')

Data transfer between the two
link = Link(inlet, outlet, datetime.timedelta(seconds=5))

Start scheduling
planner = ApsPlanner(link)
planner.start()

Every 5 seconds this snippet will pull data from a test URL, and write it to MongoDB.

Explore this documentation:

2.1 Key Concepts

• Overview

• Inlets, Outlets and Links

• Link transfer

• Records

• Scheduling

• Start and shutdown

5

https://docs.python.org/3/library/asyncio.html

databay, Release 0.3.0

• Exception handling

• Logging

• Motivation

2.1.1 Overview

Databay is a Python interface for scheduled data transfer.

It facilitates transfer of (any) data from A to B, on a scheduled interval.

In Databay, data transfer is expressed with three components:

• Inlets - for data production.

• Outlets - for data consumption.

• Links - for handling the data transit between inlets and outlets.

Scheduling is implemented using third party libraries, exposed through the BasePlanner interface. Currently
two BasePlanner implementations are available - using Advanced Python Scheduler (ApsPlanner) and Schedule
(SchedulePlanner).

A simple example:

Create an inlet, outlet and a link.
http_inlet = HttpInlet('https://some.test.url.com/')
mongo_outlet = MongoOutlet('databay', 'test_collection')
link = Link(http_inlet, mongo_outlet, datetime.timedelta(seconds=5))

Create a planner, add the link and start scheduling.
planner = ApsPlanner(link)
planner.start()

Every 5 seconds this snippet will pull data from a test URL, and write it to MongoDB.

While Databay comes with a handful of built-in inlets and outlets, its strength lies in extendability. To use Databay
in your project, create concrete implementations of Inlet and Outlet classes that handle the data production and
consumption functionality you require. Databay will then make sure data can repeatedly flow between the inlets and
outlets you create. Extending Inlets and extending Outlets is easy and has a wide range of customization. Head over
to Extending Databay section for a detailed explanation.

2.1.2 Inlets, Outlets and Links

Databay treats data transfer as a unidirectional graph, where data flows from Inlet nodes to Outlet nodes. An
example of an inlet and outlet could be an HTTP request client and a CSV writer respectively.

The relationship between the inlets and outlets is explicitly defined as a Link.

6 Chapter 2. Features

https://apscheduler.readthedocs.io/en/stable/index.html
https://schedule.readthedocs.io/

databay, Release 0.3.0

One link may connect multiple inlets and outlets.

One inlet or outlet can be connected through multiple links.

2.1. Key Concepts 7

databay, Release 0.3.0

2.1.3 Link transfer

One cycle of data production, propagation and consumption is called transfer. During transfer, a link will pull data
from all its inlets and then push that collected data to all its outlets.

Each link contains an interval at which it will run the data transfer. This interval is specified on construction with the
interval parameter of type datetime.timedelta.

Link([inlets], [outlets], interval=datetime.timedelta(minutes=10))

One quantity of data handled by Databay is represented with a Record.

Both pulling and pushing is executed asynchronously, yet pushing only starts once all inlets have finished returning
their data.

There’s a lot more you can do to your data during a transfer - such as filtering, buffering, grouping and transforming.
Head over to Advanced Concepts to learn more.

Transfer Update

Each transfer is identified by a unique Update object that is available to all inlets and outlets affected by that transfer.
It contains the tags of the governing link (if specified) and an incremental integer index. Use the str(update) to
get a formatted string of that update.

for link called 'twitter_link' and the 16th transfer execution.
>>> print(update)
twitter_link.16

2.1.4 Records

Records are data objects that provide a unified interface for data handling across Databay. In addition to storing data
produced by inlets, records may also carry individual metadata. This way information can be passed between inlets
and outlets, facilitating a broad spectrum of custom implementations. For instance one CsvOutlet could be used for
writing into two different csv files depending on which inlet the data came from.

8 Chapter 2. Features

https://docs.python.org/3/library/datetime.html#datetime.timedelta

databay, Release 0.3.0

2.1.5 Scheduling

The principal functionality of Databay is to execute data transfer repeatedly on a pre-defined interval. To facilitate
this, links are governed by a scheduler object implementing the BasePlanner class. Using the concrete scheduling
functionality, links’ transfers are executed in respect with their individual interval setting.

To schedule a link, all you need to do is to add it to a planner and call start to begin scheduling.

link = Link(some_inlet, some_outlet, timedelta(minutes=1))
planner = SchedulePlanner(link)
planner.start()

Databay provides two built-in BasePlanner implementations based on two popular Python scheduling libraries:

• ApsPlanner - using Advanced Python Scheduler.

• SchedulePlanner - using Schedule.

While they differ in the method of scheduling, threading and exception handling, they both cover a reasonable variety
of scheduling scenarios. Please refer to their appropriate documentation for more details on the difference between
the two.

You can easily use a different scheduling library of your choice by extending the BasePlanner class and imple-
menting the link scheduling and unscheduling yourself. See Extending BasePlanner for more.

2.1.6 Start and shutdown

Start

To begin scheduling links you need to call start on the planner you’re using. Both ApsPlanner and
SchedulePlanner handle start as a synchronous blocking function. To run startwithout blocking the current
thread, wrap its call within a new thread or a process:

th = Thread(target=planner.start)
th.start()

2.1. Key Concepts 9

https://apscheduler.readthedocs.io/en/stable/index.html
https://schedule.readthedocs.io/

databay, Release 0.3.0

Shutdown

To stop scheduling links you need to call shutdown(wait:bool=True) on the planner you’re using. Note that
this may or may not let the currently transferring links finish, depending on the implementation of the BasePlanner
that you’re using. Both ApsPlanner and SchedulePlanner allow waiting for the links if shutdown is called
passing True as the wait parameter.

on_start and on_shutdown

Just before scheduling starts, Inlet.on_start and Outlet.on_start callbacks will be propagated through
all inlets and outlets. Consequently, just after scheduling shuts down, Inlet.on_shutdown and Outlet.
on_shutdown callbacks will be propagated through all inlets and outlets. In both cases, these callbacks will be
called only once for each inlet and outlet. Override these callback methods to implement custom starting and shut-
down behaviour in your inlets and outlets.

immediate_transfer

By default BasePlanner will execute Link.transfer function on all its links once upon calling BasePlanner.
start. This is to avoid having to wait for the link’s interval to expire before the first transfer. You can disable this
behaviour by passing immediate_transfer=False parameter on construction.

2.1.7 Exception handling

If exceptions are thrown during transfer, both planners can be set to log and ignore these by passing the
ignore_exceptions=True parameter on construction. This ensures transfer of remaining links can carry on
even if some links are erroneous. If exceptions aren’t ignored, both ApsPlanner and SchedulePlanner will
log the exception and gracefully shutdown.

Additionally, each Link can be configured to catch exceptions by passing ignore_exceptions=True on con-
struction. This way any exceptions raised by individual inlets and outlets can be logged and ignored, allowing the
remaining nodes to continue execution and for the transfer to complete.

for planners
planner = SchedulePlanner(ignore_exceptions=True)
planner = ApsPlanner(ignore_exceptions=True)

for links
link = Link(..., ignore_exceptions=True)

2.1.8 Logging

All classes in Databay are configured to utilise a Python Logger called databay or its child loggers. Databay
utilises a custom StreamHandler with the following signature:

%Y-%m-%d %H:%M:%S.milis|levelname| message (logger name)

For example:

2020-07-30 19:51:41.318|D| http_to_mongo.0 transfer (databay.Link)

By default Databay will only log messages with WARNING priority or higher. You can manually enable more verbose
logging by calling:

10 Chapter 2. Features

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.handlers.html#logging.StreamHandler

databay, Release 0.3.0

logging.getLogger('databay').setLevel(logging.DEBUG)

Or do it only for a particular child logger:

logging.getLogger('databay.ApsPlanner').setLevel(logging.DEBUG)

You can attach new handlers to any of these loggers in order to implement custom logging behaviour - such as a
FileHandler to log into a file, or a separate StreamHandler to customise the print signature.

2.1.9 Motivation

The data flow in Databay is different from a more widely adopted Observer Pattern, where data production and propa-
gation are represented by one object, and consumption by another. In Databay data production and propagation is split
between the Inlet and Link objects. This results in a data flow model in which each stage - data transfer, production
and consumption - is independent from the others. Inlets are only concerned with producing data, Outlets only
with consuming data and Links only with transferring data. Such a model is motivated by separation of concerns
and by facilitating custom implementation of data producers and consumers.

Next Steps

1. Learn about extending Inlets and Outlets.

2. See the Examples

2.2 Advanced Concepts

Explore advanced concepts of Databay. These sections assume you’re already familiar with the Key Concepts.

2.2.1 Processors

• Simple example

• Processors explained

• Link vs Outlet processors

• Best practices

Processors are a middleware pipeline that alters the records transferred from inlets to outlets. Two most common
usages of these would be:

• Filtering - removing some or all records before feeding them to outlets.

• Transforming - altering the records before feeding them to outlets.

2.2. Advanced Concepts 11

https://docs.python.org/3/library/logging.handlers.html#logging.FileHandler
https://docs.python.org/3/library/logging.handlers.html#logging.StreamHandler
https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Separation_of_concerns

databay, Release 0.3.0

Simple example

Example filtering
def only_large_numbers(records: List[Records]):

result = []
for record in records:

if record.payload >= 100:
result.push(record)

return result

Example transforming:
def round_to_integers(records: List[Records]):

for record in records:
record.payload = round(record.payload)

return records

pass to a link
link = Link(..., processors=[only_large_numbers, round_to_integers])

The processor pipeline used in the above example will turn the following list:

[99.999, 200, 333.333]

into:

[200, 333]

Note that 99.999 got filtered out given the order of processors. If we were to swap the processors, the rounding
would occur before filtering, allowing all three results through the filter.

Processors explained

A processor is a callable function that accepts a list of records and returns a (potentially altered) list of records.

Processors are called in the order in which they are passed, after all inlets finish producing their data. The result of
each processor is given to the next one, until finally the resulting records continue the transfer normally.

Link vs Outlet processors

Databay supports two types of processors, depending on the scope at which they operate.

• Link processor - applied to all records transferred by that link.

• Outlet processor - applied only to records consumed by the particular outlet.

This distinction can be used to determine at which level a particular processor is to be applied.

12 Chapter 2. Features

https://docs.python.org/3/library/functions.html#callable

databay, Release 0.3.0

Observe in the diagram above that the Outlet A will receive records modified only by the Link Processor. At the same
time, the Outlet B will receive records modified first by the Link Processor, then by the Outlet Processor.

For example:

• Link processor - A filtering processor that removes duplicate records produced by an inlet could be applied
to all records at link level.

def remove_duplicates(records: List[Record]):
result = []
for record in records:

if record not in result:
result.append(record)

return result

link = Link(..., processors=remove_duplicates)

• Outlet processor - A filtering processor that filters out records already existing in a CSV file could be
applied only to the CsvOutlet, preventing duplicate records from being written to a CSV file, yet otherwise
allowing all records to be consumed by the other outlets in the link.

def filter_existing(records: List[Record]):
with open(os.fspath('./data/records.csv'), 'r') as f:

reader = csv.DictReader(csv_file)
existing = []
for row in reader:

for key, value in row.items():
existing.append(value)

result = []
for record in records:

if record.payload not in existing:
result.append(record)

return result

csv_outlet = CsvOutlet(..., processors=filter_existing)
link = Link(inlets, csv_outlet, ...)

Link processors are used before Groupers, while Outlet processors are used after.

2.2. Advanced Concepts 13

databay, Release 0.3.0

Best practices

Responsibility

Databay doesn’t make any further assumptions about processors - you can implement any type of processors that may
suit your needs. This also means Databay will not ensure the records aren’t corrupted by the processors, therefore you
need to be conscious of what each processor does to the data.

If you wish to verify the integrity of your records after processing, attach an additional processor at the end of your
processor pipeline that will validate the correctness of your processed records before sending it off to the outlets.

2.2.2 Groupers

• Simple example

• Groupers explained

• After batching

• Best practices

By default outlets will be given all produced records at the same time. Groupers are a middleware which allows you
to break that list of records into batches. Each batch is then fed into outlets separately, allowing outlets to process an
entire batch individually at the same time, instead of processing each record one by one.

Simple example

Following grouper will group the records into batches based on their payload ‘name’ attribute.

def grouper_by_name(batches: List[List[Record]]):
result = []
for batch in batches:

new_batch = {}
for record in batch:

new_batch[record.payload['name']] = record

result.append(list(new_batch.values()))

link = Link(..., groupers=grouper_by_name)

Which will turn the following list of records:

[
{'name': 'a', 'value': 1},
{'name': 'a', 'value': 2},
{'name': 'b', 'value': 3},
{'name': 'b', 'value': 4}

]

into the following list of batches:

[
[

{'name': 'a', 'value': 1},

(continues on next page)

14 Chapter 2. Features

databay, Release 0.3.0

(continued from previous page)

{'name': 'a', 'value': 2}
],
[

{'name': 'b', 'value': 3},
{'name': 'b', 'value': 4}

]
]

Groupers explained

A grouper is a callable function that accepts a list of batches and returns a list of batches with a different shape.

A list of batches is a two-dimensional list containing Records grouped into sub-lists.

Each of these sub-lists is called a batch.

Fox example:

1. Consider an inlet that produces six records with a simple payload. This first list is a list of records, as all records
are contained within it.

[0,1,2,3,4,5]

2. When grouped by a pairing grouper, that list may be turned into the following two-dimensional list. This second
list is a list of batches, as it contains the records grouped into three sub-lists.

[[0,1], [2,3], [3,4]]

3. Each element of the list of batches is a batch, as it represents one sub-list containing the records.

[0,1]

Note that:

• All records contained in all batches should equal to the list of records.

• All groupers are called with a list of batches. Especially note that this includes the first grouper, which is
provided with a list of batches containing one batch with all the records. This is due to the fact that groupers
are order-agnostic, allowing you to swap them around expecting a consistent behaviour. Therefore all groupers
should expect a list of batches and be aware that its shape may vary.

After batching

Once records are grouped into batches, each batch is fed into the outlets as if it was an individual list of records.
Depending on the particular implementation, outlets may expect that and process the entire batch at the same time. If
a particular outlet doesn’t support batch processing, the result of batching will effectively be nullified except for the
order in which the records will be consumed.

The following examples illustrate how the records are fed into the outlets with and without groupers.

Without groupers:

print(records)
[0,1,2,3,4,5]

for outlet in self.outlets:
outlet.push(records)

2.2. Advanced Concepts 15

https://docs.python.org/3/library/functions.html#callable

databay, Release 0.3.0

In this case outlet.push is called once with the entire list of records [0,1,2,3,4,5].

With groupers:

print(records)
[0,1,2,3,4,5]

batches = [records] # the default batch contains all records
for grouper in groupers:

batches = grouper(batches) # the groupers process the batches

print(batches)
[[0,1],[2,3],[4,5]]

for batch in batches:
for outlet in self.outlets:

outlet.push(batch)

In this case outlet.push is called three times, each time receiving a different batch: [0,1], [2,3] and [4,5].

Observe that when no groupers are provided, there is only one batch containing all records. This will provide all
outlets with all records at the same time, effectively nullifying the batches’ functionality described in this section.

Best practices

Responsibility

Databay doesn’t make any assumptions about groupers - you can implement any type of groupers that may suit your
needs. This also means Databay will not ensure the records aren’t corrupted by the groupers. Therefore you need to
be conscious of what each grouper does to the data.

Only batching

Note that you should only use groupers’ functionality to group the records into batches. Do not transform or filter the
records using groupers - you can use Processors for that instead. Hypothetically, if a list of batches produced by any
grouper was to be flattened it should return the list of records as originally produced by the inlets, except for the order
of records.

print(records)
[0,1,2,3,4,5]

batches = [records] # the default batch contains all records
for grouper in groupers:

batches = grouper(batches)

flat_batches = [record for batch in batches for record in batch] # flatten the batches

do both list contain same elements regardless of the order?
print(set(records) == set(flat_batches))
True

16 Chapter 2. Features

databay, Release 0.3.0

Adhere to correct structure

Databay expects to work with either one- or two-dimensional data, depending on whether groupers are used. One-
dimensional being a list of records (ie. without batching), two-dimensional being a list of batches (ie. with batching).
In either case, outlets will be provided with a list (or sub-list) of records and are expected to process these as a one-
dimensional list.

Introducing further sub-list breakdowns - eg. batches containing batches - is not expected and such subsequent subdi-
visions will not be indefinitely iterated. If you choose to introduce further subdivisions ensure the outlets you use are
familiar with such data structure and are able to process it accordingly.

2.2.3 Buffers

• Simple example

• Store or release?

• Default controllers

• Custom controllers

• Buffer reset

• Combining controllers

• Flush

• Best practices

Buffers are special built-in Processors. They allow you to temporarily accumulate records before passing them
over to outlets.

Simple example

The following example uses a buffer to store the records until the number of records produced exceed 10 items.

1. Define a buffer with count_threshold=10:

buffer = Buffer(count_threshold=10)
link = Link(inlet, outlet, processors=buffer)

1. On first transfer the inlet produces 4 records, the buffer stores them. The outlet receives no records.

2. On second transfer the inlet produces 4 records, the buffer stores them along with the first 4. The outlet still
receives no records.

3. On third transfer the inlet produces 3 records. Having exceeded the count_threshold of 10, the buffer will
release all 11 records to the outlet. The outlet receives a list of 11 records.

2.2. Advanced Concepts 17

databay, Release 0.3.0

Store or release?

When processing records (see Processors) a Buffer will figure out whether records should be stored or released.
This is done by passing the list of records to Buffer's internal callable functions called controllers.

Each controller performs different types of checks, returning True or False depending on whether records should
be released or stored respectively.

Default controllers

Buffer comes with two default controllers:

• count_controller - buffering records until reaching a count threshold defined by Buffer.
count_threshold parameter, counted from the first time the records are stored. For example:

buffer = Buffer(count_threshold=50) # release records every 50 records.

• time_controller - buffering records until reaching a time threshold defined by Buffer.
time_threshold parameter, counted from the first time the records are stored. For example:

buffer = Buffer(time=60) # release records every 60 seconds.

Custom controllers

Apart from using the default controllers, buffer accepts any number of custom controllers. Each controller will be
called with the list of records and is expected to return True or False depending on whether records should be
buffered or released. For example:

def big_value_controller(records: List[Records]):
for record in records:

if record.payload.value > 10000
return True

return False

buffer = Buffer(custom_controllers=big_value_controller)

Buffer reset

Every time the records are released, the buffer will reset the counters of its default controllers and empty the list of
records stored.

You can pass a callable as an optional on_reset parameter, which will be invoked every time Buffer.reset
is called.

18 Chapter 2. Features

https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#callable

databay, Release 0.3.0

Combining controllers

You can use any combination of default and custom controllers. Buffer allows you to use two types of boolean logic
when evaluating whether records should be released:

• conjunction (AND) - releasing records only when all controllers return True.

• disjunction (OR) - releasing records as soon as any controller returns True (default).

For example:

buffer = Buffer(count_threshold=10, time_threshold=60, conjugate_
→˓controllers=False) # OR

This buffer will release records once 10 records were produced or 60 seconds have elapsed - whichever
comes first.

buffer = Buffer(count_threshold=10, time_threshold=60, conjugate_
→˓controllers=True) # AND

This buffer will release records once 10 records were produced and 60 seconds have elapsed.

The order of execution of controllers is as follows:

1. Custom controllers, in order they are passed to the Buffer.

2. Count controller.

3. Time controller.

Buffer uses short-circuit logic to stop evaluation of controllers as soon as the decision to release or store is known,
therefore not all controllers may be called each time the Buffer is executed.

Once the records are released, the buffer will reset.

Flush

Buffer contains a boolean field called flush, which if set to Truewill enforce release of records, independently of
what the controllers may decide. Such flushing will only take place next time the buffer is called during the upcoming
transfer. Flushing will also reset the buffer.

Best practices

One-to-one relationship

Given the internal record storage functionality, one buffer should only be used as either a Link or an Outlet processor
- but never both at the same time.

Similarly, one buffer should only be used on one Link or Outlet - never multiple at the same time.

2.2. Advanced Concepts 19

databay, Release 0.3.0

Ensure records are consumed

Note that in several scenarios a buffer may never release its records, therefore they would never be consumed by the
outlets. Consider the following examples:

• Databay crashes before records are released.

• Planner is stopped before records are released.

• Thresholds are set to unreachable numbers

Databay does not automatically handle such occasions, however you may preempt these and ensure that records are
released manually by combining the buffer’s flush functionality with planners’ force_transfer method.

try:
set up Databay
buffer = Buffer(count_threshold=4000)
link = Link(inlets, outlets, interval=10)
planner = SchedulePlanner(link)
planner.start()

except Exception as e:
print('Error while running Databay: ' + str(e))

finally:
buffer.flush = True # ensure the buffer will release data
link.remove_inlets(link.inlets) # we don't need to produce any more data
planner.force_transfer() # run one final transfer to flush the data

2.3 Extending Databay

In order to handle your custom data production and consumption in Databay, you need to extend the Inlet and
Outlet classes.

2.3.1 Extending Inlets

• Simple example

• Creating records

• Producing multiple records

• Global metadata

• Local metadata

• Start and shutdown

• Asynchronous inlet

• Test your inlet

To implement custom data production you need to extend the Inlet class, override the Inlet.pull method and
return the data produced.

20 Chapter 2. Features

databay, Release 0.3.0

Simple example

1. Extend the Inlet class, returning produced data from the pull method:

class RandomIntInlet(Inlet):

def pull(self, update):
return random.randint(0, 100)

1. Instantiate it:

random_int_inlet = RandomIntInlet()

1. Add it to a link and start scheduling:

link = Link(random_int_inlet,
print_outlet,
interval=timedelta(seconds=5),
tags='random_ints')

planner = SchedulePlanner(link)
planner.start()

Above setup will produce a random integer every 5 seconds (See full example).

Each pull call is provided with an Update object as a parameter. It contains the tags of the governing link (if
specified) and an incremental integer index. Use the str(update) to get a formatted string of that update. See
Transfer Update for more.

Your inlet may skip producing data by returning an empty list.

Creating records

Data produced by inlets is wrapped in Record objects before being passed to outlets. If you wish to control how
records are created or attach local metadata, use the Inlet.new_record method to create records within your inlet
and return these instead.

class RandomIntInlet(Inlet):

def pull(self, update):
new_integer = random.randint(0, 100)
record = self.new_record(payload=new_integer)
return record

Producing multiple records

During one transfer you may produce multiple data entities within the Inlet.pull method. Returning a list is
an indication that multiple records are being produced at once, in which case each element of the list will be turned
into a Record. Any return type other than list (eg. tuple, set, dict) will be considered as one Record.

Returning a list, producing two records:

def pull(self, update):

produces two records
return [random.randint(0, 50), random.randint(0, 100)]

2.3. Extending Databay 21

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

databay, Release 0.3.0

Returning a set, producing one record:

def pull(self, update):

produces one records
return {random.randint(0, 50), random.randint(0, 100)}

Same is true when explicitly creating multiple records within pull and returning these.

def pull(self, update):
first_record = self.new_record(random.randint(0, 50))
second_record = self.new_record(random.randint(0, 100))

return [first_record, second_record]

If you wish for one record to contain a list of data that doesn’t get broken down to multiple records, you can either
create the record yourself passing the list as payload or return a nested list:

def pull(self, update):
r1 = random.randint(0, 50)
r2 = random.randint(0, 100)

return self.new_record(payload=[r1, r2])

or
...

def pull(self, update):
r1 = random.randint(0, 50)
r2 = random.randint(0, 100)

return [[r1, r2]]

Global metadata

Inlet can attach custom metadata to all records it produces. Metadata’s intended use is to provide additional context
to records when they are consumed by outlets. To do so, when constructing an Inlet pass a metadata dictionary, a
copy of which will be attached to all records produced by that Inlet instance.

random_cat_inlet = RandomIntInlet(metadata={'animal': 'cat'})
produces Record(metadata={'animal': 'cat'})

random_parrot_inlet = RandomIntInlet(metadata={'animal': 'parrot'})
produces Record(metadata={'animal': 'parrot'})

Metadata dictionary is independent from the inlet that it is given to. Inlet should not modify the metadata or read it;
instead inlets should expect all setup parameters to be provided as arguments on construction.

Incorrect:

def MyInlet():
def __init__(self, metadata):

self.should_do_stuff = metadata.get('should_do_stuff')

Correct:

22 Chapter 2. Features

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

databay, Release 0.3.0

def MyInlet():
def __init__(self, should_do_stuff, *args, **kwargs):

super().__init__(*args, **kwargs) # metadata dict gets passed and stored here
self.should_do_stuff = should_do_stuff

Metadata supported by each outlet differs and is dependent on the particular outlet implementation. Please refer to
specific outlet documentation for more information on metadata expected.

Additionally, each record is supplied with a special __inlet__ metadata entry containing string representation of
the inlet that produced it.

>>> record.metadata['__inlet__']
RandomIntInlet(metadata={})

Local metadata

Apart from providing an inlet with Global metadata that will be the same for all records, you may also attach local
per-record metadata that can vary for each record. This can be done inside of the pull method by specifying a
metadata dictionary when creating a record using Inlet.new_record method.

class RandomIntInlet(Inlet):

def pull(self, update):
new_integer = random.randint(0, 100)

if new_integer > 50:
animal = 'cat'

else:
animal = 'parrot'

record = self.new_record(payload=new_integer, metadata={'animal': animal})
return record

Note that local metadata will override global metadata if same metadata is specified globally and locally.

Start and shutdown

All inlets contain Inlet.active flag that is set by the governing link when scheduling starts and unset when
scheduling stops. You can use this flag to refine the behaviour of your inlet.

You can further control the starting and shutting down functionality by overriding the Inlet.on_start and
Inlet.on_shutdown methods. If one Inlet instance is governed by multiple links, these callbacks will be
called only once per instance by whichever link executes first.

class RandomIntInlet(Inlet):

def pull(self, update):
return random.randint(0, 100)

def on_start(self):
random.seed(42)

2.3. Extending Databay 23

databay, Release 0.3.0

Asynchronous inlet

You may implement asynchronous data production by defining Inlet.pull as a coroutine. The governing link will
await all its inlets to finish producing their data before passing the results to outlets.

import asyncio
from databay import Inlet

class AsyncInlet(Inlet):

Note the 'async' keyword
async def pull(self, update):

async_results = await some_async_code()
return async_results

See Basic Asynchronous for a full example of implementing asynchronous code in Databay.

You can limit (throttle) how many inlets can execute simultaneously by setting inlet_concurrency parameter
when constructing a link.

Test your inlet

Databay comes with a template unittest.TestCase designed to validate your implementation of Inlet class.
To use it, create a new test class extending InletTester and implement InletTester.get_inlet method
returning an instance of your inlet.

from databay.misc import inlet_tester

class RandomIntInletTest(inlet_tester.InletTester):

def get_inlet(self):
return RandomIntInlet()

...

You can add further tests here

You may also return a list of inlets, to run each test on various configurations of your inlet:

def get_inlet(self):
return [

RandomIntInlet(),
RandomIntInlet(min=10, max=200),

]

Running such a concrete test will execute a variety of test cases that ensure your inlet correctly provides the expected
functionality. These include:

• Creating new records.

• Attaching global and local metadata.

• Calling pull method.

Since InletTester will call pull on your inlet, you may want to mock some of your inlet’s functionality in order
to separate testing of its logic from external code.

24 Chapter 2. Features

https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/stdtypes.html#list

databay, Release 0.3.0

Next Steps

1. Learn about extending Outlets.

2. See the Examples

2.3.2 Extending Outlets

• Simple example

• Consuming Records

• Metadata

• Start and shutdown

• Asynchronous outlet

To implement custom data consumption you need to extend the Outlet class and override the Outlet.push
method.

Simple example

1. Extend the Outlet class, printing the incoming data in the push method:

class PrintOutlet(Outlet):

def push(self, records: [Record], update):
for record in records:

print(update, record.payload)

1. Instantiate it:

print_outlet = PrintOutlet()

1. Add it to a link and and schedule:

link = Link(random_int_inlet,
print_outlet,
interval=timedelta(seconds=2),
tags='print_outlet')

planner = SchedulePlanner(link)
planner.start()

Above setup will print all records transferred by that link (See full example).

Each push call is provided with an Update object as one of parameters. It contains the tags of the governing link
(if specified) and an incremental integer index. Use the str(update) to get a formatted string of that update. See
Transfer Update for more.

2.3. Extending Databay 25

databay, Release 0.3.0

Consuming Records

Outlets are provided with a list of all records produced by all inlets of the governing link. Each Record contains
two fields:

1. Record.payload - data stored in the record.

2. Record.metadata - metadata attached to the record

from databay import Outlet

class ConditionalPrintOutlet(Outlet):

def push(self, records, update):
for record in records:

if record.metadata.get('should_print', False):
print(record.payload)

By default a copy of records is provided to outlets in order to prevent accidental data corruption. You can disable
this mechanism by passing copy_records=False when constructing a link, in which case the same list will
be provided to all outlets. Ensure you aren’t modifying the records or their underlying data in your Outlet.push
method.

Metadata

Your outlet can be built to behave differently depending on the metadata carried by the records. Metadata is attached to
each record when inlets produce data. Learn more about the difference between Global metadata and Local metadata.

When creating an outlet it is up to you to ensure the expected metadata and its effects are clearly documented. To
prevent name clashes between various outlets’ metadata, it is recommended to include outlet name in the metadata
keys expected by your outlet.

Incorrect:

CSV_FILE = 'CSV_FILE'

Correct:

CSV_FILE = 'CsvOutlet.CSV_FILE'

class CsvOutlet(Outlet):

Name of csv file to write records to.
CSV_FILE = 'CsvOutlet.CSV_FILE'

def push(self, records:[Record], update):
for record in records:

if self.CSV_FILE in record.metadata:
csv_file = record.metadata[self.CSV_FILE] + '.csv'

...
write to csv_file specified

...

random_int_inletA = RandomIntInlet(metadata={CsvOutlet.CSV_FILE: 'cat'})
random_int_inletB = RandomIntInlet(metadata={CsvOutlet.CSV_FILE: 'dog'})

26 Chapter 2. Features

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

databay, Release 0.3.0

For clarity and readability, Databay provides the MetadataKey type for specifying metadata key class attributes.

from databay.outlet import MetadataKey

class CsvOutlet(Outlet):
CSV_FILE:MetadataKey = 'CsvOutlet.CSV_FILE'

Start and shutdown

All outlets contain Outlet.active flag that is set by the governing link when scheduling starts and unset when
scheduling stops. You can use this flag to refine the behaviour of your outlet.

You can further control the starting and shutting down functionality by overriding the Outlet.on_start and
Outlet.on_shutdown methods. If one Outlet instance is governed by multiple links, these callbacks will be
called only once per instance by whichever link executes first.

class PrintOutlet(Outlet):

def push(self, records, update):
print(f'{self.prefix} - {records}')

def on_start(self):
self.prefix = 'foo'

Asynchronous outlet

You may implement asynchronous data consumption by defining Outlet.push as a coroutine.

import asyncio
from databay import Outlet

class AsyncOutlet(Outlet):

Note the 'async' keyword
async def push(self, records, update):

async_results = await some_async_code(records)
await asyncio.sleep(1)

2.3. Extending Databay 27

databay, Release 0.3.0

See Basic Asynchronous for a full example of implementing asynchronous code in Databay.

Next Steps

1. Learn about extending Inlets.

2. See the Examples

2.3.3 Extending BasePlanner

Databay comes with two implementations of BasePlanner - ApsPlanner and SchedulePlanner. If you re-
quire custom scheduling functionality outside of these two interfaces, you can create your own implementation of
BasePlanner. Have a look at the two existing implementations for reference: ApsPlanner and SchedulePlanner.

To extend the BasePlanner you need to provide a way of executing Link.transfer method repeatedly by
implementing the following methods. Note that some of these methods are private since they are called internally by
BasePlanner and should not be executed directly.

• _schedule

• _unschedule

• _start_planner

• _shutdown_planner

• running

_schedule

Schedule a Link. This method runs whenever add_links is called and should not be executed directly. It should
accept a link and add the Link.transfer method to the scheduling system you’re using. Note that you do not
need to store the link in your planner - BasePlanner will automatically store it under BasePlanner.links when
add_links is called. It isn’t required for the scheduling to be already running when _schedule is called.

Each link comes with a datetime.timedelta interval providing the frequency at which its Link.transfer
method should be run. Use Link.interval and schedule according to the interval specified.

If the scheduler you’re using utilises some form of task-managing job objects, you must assign these to the link being
scheduled using Link.set_job. This is to ensure the job can be correctly destroyed later when remove_links
is called.

Example from ApsPlanner._schedule:

def _schedule(self, link:Link):
job = self._scheduler.add_job(link.transfer,

trigger=IntervalTrigger(seconds=link.interval.total_seconds()))

link.set_job(job)

28 Chapter 2. Features

../_modules/databay/planners/aps_planner.html
../_modules/databay/planners/schedule_planner.html
extending_base_planner.html#schedule
extending_base_planner.html#unschedule
extending_base_planner.html#start-planner
extending_base_planner.html#shutdown-planner
extending_base_planner.html#running-property
https://docs.python.org/3/library/datetime.html#datetime.timedelta

databay, Release 0.3.0

_unschedule

Unschedule a Link. This method runs whenever remove_links is called and should not be executed directly. It
should accept a link and remove it from the scheduling system you’re using. Note that you do not need to remove
the link from your planner - BasePlanner will automatically remove that link from BasePlanner.links when
remove_links is called. It isn’t required for the scheduling to be already stopped when _unschedule is called.

If the scheduler you’re using utilises some form of task-managing job objects, you may access these using Link.job
in order to correctly destroy them if necessary when _unschedule is called.

Example from ApsPlanner._unschedule:

def _unschedule(self, link:Link):
if link.job is not None:

link.job.remove()
link.set_job(None)

_start_planner

Start the scheduling. This method runs whenever BasePlanner.start is called and should not be executed
directly. It should begin the scheduling of links.

This method will be called just after all Inlet.on_start and Outlet.on_start are called.

Example from ApsPlanner._start_planner:

def _start_planner(self):
self._scheduler.start()

_shutdown_planner

Shutdown the scheduling. This method runs whenever BasePlanner.shutdown is called and should not be
executed directly. It should shut down the scheduling of links.

A wait parameter is provided that you can pass down to your scheduling system if it allows waiting for the remaining
jobs to complete before shutting down.

This method will be called just before all Inlet.on_shutdown and Outlet.on_shutdown are called.

Example from ApsPlanner._shutdown_planner:

def _shutdown_planner(self, wait:bool=True):
self._scheduler.shutdown(wait=wait)

Running property

BasePlanner.running property should return a boolean value indicating whether the scheduler is currently
running. By default this property always returns True.

2.3. Extending Databay 29

databay, Release 0.3.0

Exceptions

When implementing your planner you should consider that links may raise exceptions when executing. Your planner
should anticipate this and allow handling the exceptions appropriately to ensure continuous execution. BasePlanner
exposes a protected BasePlanner._on_exception method that can be called to handle the exception, allowing
to ignore exceptions when ignore_exceptions=True is passed on construction. Otherwise the exceptions will
be logged and the planner will attempt a graceful shutdown. Both ApsPlanner and SchedulePlanner support
this behaviour by default. See Exception handling for more.

Immediate transfer on start

By default BasePlanner will execute Link.transfer function on all its links once upon calling BasePlanner.
start. This is to avoid having to wait for the link’s interval to expire before the first transfer. You can disable this
behaviour by passing immediate_transfer=False parameter on construction of the BasePlanner to disable
it for all governed links or individually for selected links by setting their immediate_transfer to False.

Shutdown atexit

Each BasePlanner registers an atexit callback, which will attempt to gracefully shut the planner down if it is
created with shutdown_at_exit parameter set to True.

Next Steps

1. Learn about extending Inlets and Outlets.

2. See the Examples

2.3.4 Community Contributions

We aim to support the ecosystem of Databay users by collating and promoting third-party inlets and outlets that
implement popular functionalities. We encourage you to share the inlets and outlets you write with the community.
See the list of currently shared inlets and outlets, as well as the description of the submission process on Databay’s
GitHub Page.

Guideline

To ensure your contribution is widely adopted, we recommend the following guideline of implementation.

Read the documentation

Understand the design decisions behind Databay, and the inlets and outlets. Read through the examples as well as the
currently implemented inlets and outlets to understand how Databay can be used.

30 Chapter 2. Features

https://docs.python.org/3/library/atexit.html#module-atexit
https://github.com/Voyz/databay#community
https://github.com/Voyz/databay#community

databay, Release 0.3.0

Write tests

The more reliable your code is, the more likely other users will choose to rely on it. In this StackOverflow question you
can read more about why tests matter. You can test some fundamental Databay functionality by using InletTester.
You should write additional tests outside of scope of InletTester to cover the custom logic introduced by you.
Remember that apart from writing unit tests, it is easy to write integration tests using Databay planners.

See to the tests of the built-in inlets and outlets for reference.

Write documentation

Your inlets and outlets should be well documented. Each implementation will be dependant on the functionality
it provides, therefore your design decisions should be laid out and the API explained. We encourage you to write
external standalone documentation apart from writing docstrings in code. Your GitHub page should also contain a
short introduction, overview and examples.

Correctly use metadata

Inlets

When writing inlets, remember to not modify or read the metadata provided, and to correctly initialise your inlet using
super().__init__(*args, **kwargs).

Incorrect:

class MyInlet(Inlet):

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.my_argument = self.metadata['my_argument']

Correct:

class MyInlet(Inlet):

def __init__(self, my_argument, *args, **kwargs):
super().__init__(*args, **kwargs)
self.my_argument = my_argument

Outlets

When writing outlets supporting metadata, you should clearly describe the expected behaviour of each metadata in the
documentation.

Your outlet should not exclusively rely on metadata and error out in its absence. Provide a method of setting default
values for all metadata you expect and use these when encountering records that don’t carry metadata.

To prevent name clashing with other implementations, each metadata key should contain the name of your outlet
included in its body.

Incorrect:

FILEPATH:MetadataKey = 'FILEPATH'

2.3. Extending Databay 31

https://stackoverflow.com/a/67500/3508719
https://github.com/Voyz/databay/tree/master/test/test

databay, Release 0.3.0

Correct:

FILEPATH:MetadataKey = 'CsvOutlet.FILEPATH'

2.4 Examples

You can find all examples in the GitHub repository in the Examples folder.

• Simple usage

• Basic Inlet

• Basic Outlet

• Intermediate Inlet

• Intermediate Outlet

• Basic metadata

• Basic asynchronous

• Elasticsearch Outlet

• Twitter Inlet

2.4.1 Simple usage

This is a simple example of how data can be produced, transferred and consumed in Databay. It uses built-in
HttpInlet for producing data using a test URL and MongoOutlet consuming it using MongoDB.

1. Create an inlet for data production:

http_inlet = HttpInlet('https://jsonplaceholder.typicode.com/todos/1')

1. Create an outlet for data consumption:

mongo_outlet = MongoOutlet(database_name='databay',

1. Add the two to a link that will handle data transfer between them:

link = Link(http_inlet, mongo_outlet,
datetime.timedelta(seconds=5), tags='http_to_mongo')

1. Create a planner, add the link and start scheduling:

planner = ApsPlanner(link)
planner.start()

1. (Optional) In this example the databay logger is configured to display all messages. See Logging for more
information.

logging.getLogger('databay').setLevel(logging.DEBUG)

Output:

32 Chapter 2. Features

https://github.com/Voyz/databay/tree/master/examples

databay, Release 0.3.0

>>> 2020-07-30 19:51:36.313|I| Added link: Link(tags:['http_to_mongo'],
→˓inlets:[HttpInlet(metadata:{})], outlets:[MongoOutlet()], interval:0:00:05)
→˓(databay.BasePlanner)
>>> 2020-07-30 19:51:36.314|I| Starting ApsPlanner(threads:30) (databay.BasePlanner)

>>> 2020-07-30 19:51:41.318|D| http_to_mongo.0 transfer (databay.Link)
>>> 2020-07-30 19:51:41.318|I| http_to_mongo.0 pulling https://jsonplaceholder.
→˓typicode.com/todos/1 (databay.HttpInlet)
>>> 2020-07-30 19:51:42.182|I| http_to_mongo.0 received https://jsonplaceholder.
→˓typicode.com/todos/1 (databay.HttpInlet)
>>> 2020-07-30 19:51:42.188|I| http_to_mongo.0 insert [{'userId': 1, 'id': 1, 'title
→˓': 'delectus aut autem', 'completed': False}] (databay.MongoOutlet)
>>> 2020-07-30 19:51:42.191|I| http_to_mongo.0 written [{'userId': 1, 'id': 1, 'title
→˓': 'delectus aut autem', 'completed': False, '_id': ObjectId(
→˓'5f22c25ea7aca516ec3fcf38')}] (databay.MongoOutlet)
>>> 2020-07-30 19:51:42.191|D| http_to_mongo.0 done (databay.Link)

>>> 2020-07-30 19:51:46.318|D| http_to_mongo.1 transfer (databay.Link)
>>> 2020-07-30 19:51:46.318|I| http_to_mongo.1 pulling https://jsonplaceholder.
→˓typicode.com/todos/1 (databay.HttpInlet)
>>> 2020-07-30 19:51:46.358|I| http_to_mongo.1 received https://jsonplaceholder.
→˓typicode.com/todos/1 (databay.HttpInlet)
>>> 2020-07-30 19:51:46.360|I| http_to_mongo.1 insert [{'userId': 1, 'id': 1, 'title
→˓': 'delectus aut autem', 'completed': False}] (databay.MongoOutlet)
>>> 2020-07-30 19:51:46.361|I| http_to_mongo.1 written [{'userId': 1, 'id': 1, 'title
→˓': 'delectus aut autem', 'completed': False, '_id': ObjectId(
→˓'5f22c262a7aca516ec3fcf39')}] (databay.MongoOutlet)
>>> 2020-07-30 19:51:46.362|D| http_to_mongo.1 done (databay.Link)
...

Above log can be read as follows:

• At first the planner adds the link provided and starts scheduling:

Added link: Link(tags:['http_to_mongo'], inlets:[HttpInlet(metadata:{})],
→˓outlets:[MongoOutlet()], interval:0:00:05)
Starting ApsPlanner(threads:30)

• Once scheduling starts, link will log the beginning and end of each transfer:

http_to_mongo.0 transfer

Note the http_to_mongo.0 prefix in the message. It is the string representation of the Update
object that represents each individual transfer executed by that particular link. http_to_mongo is
the tag of the link, while 0 represents the incremental index of the transfer.

• Then HttpInlet logs its data production:

http_to_mongo.0 pulling https://jsonplaceholder.typicode.com/todos/1
http_to_mongo.0 received https://jsonplaceholder.typicode.com/todos/1

• Followed by MongoOutlet logging its data consumption:

http_to_mongo.0 insert [{'userId': 1, 'id': 1, 'title': 'delectus aut
→˓autem', 'completed': False}]
http_to_mongo.0 written [{'userId': 1, 'id': 1, 'title': 'delectus aut

• Finally, link reports completing its first transfer:

2.4. Examples 33

databay, Release 0.3.0

http_to_mongo.0 done

Full example:

import datetime
import logging

from databay import Link
from databay.inlets import HttpInlet
from databay.outlets import MongoOutlet
from databay.planners import ApsPlanner

logging.getLogger('databay').setLevel(logging.DEBUG)

Create an inlet, outlet and a link.
http_inlet = HttpInlet('https://jsonplaceholder.typicode.com/todos/1')
mongo_outlet = MongoOutlet(database_name='databay',

collection='test_collection')
link = Link(http_inlet, mongo_outlet,

datetime.timedelta(seconds=5), tags='http_to_mongo')

Create a planner, add the link and start scheduling.
planner = ApsPlanner(link)
planner.start()

2.4.2 Basic Inlet

In this example we create a simple implementation of Inlet, producing a random integer on a 5 second interval.

1. Extend the Inlet class, returning produced data from the pull method:

class RandomIntInlet(Inlet):

def pull(self, update):
return random.randint(0, 100)

1. Instantiate it:

random_int_inlet = RandomIntInlet()

1. Add it to a link:

link = Link(random_int_inlet,
print_outlet,
interval=timedelta(seconds=5),
tags='random_ints')

1. Add to a planner and schedule.

planner = SchedulePlanner(link)
planner.start()

Output:

>>> random_ints.0 50
>>> random_ints.1 61

(continues on next page)

34 Chapter 2. Features

databay, Release 0.3.0

(continued from previous page)

>>> random_ints.2 5
>>> ...

On each transfer RandomIntInlet produces a random integer.

Full example:

from databay import Link
from databay.outlets import PrintOutlet
from databay.planners import SchedulePlanner
from datetime import timedelta
from databay import Inlet
import random

class RandomIntInlet(Inlet):

def pull(self, update):
return random.randint(0, 100)

random_int_inlet = RandomIntInlet()

print_outlet = PrintOutlet(only_payload=True)

link = Link(random_int_inlet,
print_outlet,
interval=timedelta(seconds=5),
tags='random_ints')

planner = SchedulePlanner(link)
planner.start()

2.4.3 Basic Outlet

In this example we create a simple implementation of Outlet, printing the incoming records one by one.

1. Extend the Outlet class, printing the incoming data in the push method:

class PrintOutlet(Outlet):

def push(self, records: [Record], update):
for record in records:

print(update, record.payload)

1. Instantiate it:

print_outlet = PrintOutlet()

1. Add it to a link:

link = Link(random_int_inlet,
print_outlet,
interval=timedelta(seconds=2),
tags='print_outlet')

2.4. Examples 35

databay, Release 0.3.0

1. Add to a planner and schedule.

planner = SchedulePlanner(link)
planner.start()

Output:

>>> print_outlet.0 10
>>> print_outlet.1 34
>>> print_outlet.2 18
>>> ...

On each transfer PrintOutlet prints the payload of records generated by RandomIntInlet

Full example:

from datetime import timedelta

from databay import Link
from databay.inlets import RandomIntInlet
from databay.planners import SchedulePlanner
from databay.record import Record
from databay.outlet import Outlet

class PrintOutlet(Outlet):

def push(self, records: [Record], update):
for record in records:

print(update, record.payload)

random_int_inlet = RandomIntInlet()
print_outlet = PrintOutlet()

link = Link(random_int_inlet,
print_outlet,
interval=timedelta(seconds=2),
tags='print_outlet')

planner = SchedulePlanner(link)
planner.start()

2.4.4 Intermediate Inlet

This example demonstrates an inlet that produces weather prognostic using OpenWeatherMap. It showcases what a
realistic implementation of Inlet may look like.

1. Create the WeatherInlet implementing Inlet class. We expect api_key and city_name to be pro-
vided when constructing this inlet.

from databay.inlet import Inlet
import urllib.request

class WeatherInlet(Inlet):
def __init__(self, api_key: str, city_name: str, *args, **kwargs):

(continues on next page)

36 Chapter 2. Features

https://openweathermap.org/current

databay, Release 0.3.0

(continued from previous page)

super().__init__(*args, **kwargs)

self.api_key = api_key
self.city_name = city_name

1. Implement pull method, starting by creating the OpenWeatherMap URL using the api_key and
city_name provided.

def pull(self, update) -> List[Record]:
url = f'https://api.openweathermap.org/data/2.5/weather?' \

f'q={self.city_name}&' \
f'appid={self.api_key}'

1. Make a request to OpenWeatherMap using urllib.request.

contents = urllib.request.urlopen(url).read().decode('utf8')

1. Parse the response and return produced data.

formatted = json.loads(contents)
return formatted['weather'][0]['description']

1. Instantiate WeatherInlet.

api_key = os.environ.get('OPEN_WEATHER_MAP_API_KEY')
weather_inlet = WeatherInlet(api_key, 'Bangkok')

1. Create a link, add it to planner and schedule.

link = Link(weather_inlet, PrintOutlet(only_payload=True),
interval=timedelta(seconds=2), tags='bangkok_weather')

planner = ApsPlanner(link)
planner.start()

Output:

>>> bangkok_weather.0 light rain
>>> bangkok_weather.1 light rain
>>> bangkok_weather.2 light rain
>>> ...

On each transfer WeatherInlet makes a request to OpenWeatherMap API and returns a description of the weather
in the selected city.

Full example:

import json
import os
from datetime import timedelta
from typing import List

from databay import Record, Link
from databay.outlets import PrintOutlet
from databay.planners import ApsPlanner

(continues on next page)

2.4. Examples 37

https://docs.python.org/3/library/urllib.request.html#module-urllib.request

databay, Release 0.3.0

(continued from previous page)

from databay.inlet import Inlet
import urllib.request

class WeatherInlet(Inlet):
def __init__(self, api_key: str, city_name: str, *args, **kwargs):

super().__init__(*args, **kwargs)

self.api_key = api_key
self.city_name = city_name

def pull(self, update) -> List[Record]:
url = f'https://api.openweathermap.org/data/2.5/weather?' \

f'q={self.city_name}&' \
f'appid={self.api_key}'

contents = urllib.request.urlopen(url).read().decode('utf8')

formatted = json.loads(contents)
return formatted['weather'][0]['description']

api_key = os.environ.get('OPEN_WEATHER_MAP_API_KEY')
weather_inlet = WeatherInlet(api_key, 'Bangkok')

link = Link(weather_inlet, PrintOutlet(only_payload=True),
interval=timedelta(seconds=2), tags='bangkok_weather')

planner = ApsPlanner(link)
planner.start()

2.4.5 Intermediate Outlet

This example demonstrates an outlet that writes the incoming records into a file. It showcases what a realistic imple-
mentation of Outlet may look like.

1. Create the FileOutlet implementing Outlet class. This outlet will accept two metadata keys:

• FileOutlet.FILEPATH - specifying the file that the record should be written into.

• FileOutlet.FILE_MODE - specifying the write mode using Python’s default IO.

class FileOutlet(Outlet):

FILEPATH = 'FileOutlet.FILEPATH'
"""Filepath of the file to write to."""

FILE_MODE = 'FileOutlet.FILE_MODE'
"""Write mode to use when writing into the csv file."""

1. We give an option to specify default_filepath and default_file_mode when constructing this out-
let.

def __init__(self,
default_filepath: str = 'outputs/default_output.txt',
default_file_mode: str = 'a'):

(continues on next page)

38 Chapter 2. Features

https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files

databay, Release 0.3.0

(continued from previous page)

super().__init__()

self.default_filepath = default_filepath
self.default_file_mode = default_file_mode

1. Implement push method, looping over all records and reading their metadata.

def push(self, records: [Record], update):
for record in records:

filepath = record.metadata.get(
self.FILEPATH, self.default_filepath)

file_mode = record.metadata.get(
self.FILE_MODE, self.default_file_mode)

1. Write the record according to the filepath and file_mode found.

with open(filepath, file_mode) as f:
f.write(str(record.payload)+'\n')

1. Instantiate FileOutlet and RandomIntInlet provided with a metadata dictionary.

1. Create a link, add to a planner and schedule.

link = Link(random_int_inlet,
file_outlet,
interval=timedelta(seconds=2),
tags='file_outlet')

planner = ApsPlanner(link)
planner.start()

Creates outputs/random_ints.txt file:

1
76
52
76
64
89
71
12
70
74
...

Full example:

from datetime import timedelta

from databay import Link
from databay.inlets import RandomIntInlet
from databay.planners import ApsPlanner
from databay.record import Record
from databay.outlet import Outlet

(continues on next page)

2.4. Examples 39

databay, Release 0.3.0

(continued from previous page)

class FileOutlet(Outlet):

FILEPATH = 'FileOutlet.FILEPATH'
"""Filepath of the file to write to."""

FILE_MODE = 'FileOutlet.FILE_MODE'
"""Write mode to use when writing into the csv file."""

def __init__(self,
default_filepath: str = 'outputs/default_output.txt',
default_file_mode: str = 'a'):

super().__init__()

self.default_filepath = default_filepath
self.default_file_mode = default_file_mode

def push(self, records: [Record], update):
for record in records:

filepath = record.metadata.get(
self.FILEPATH, self.default_filepath)

file_mode = record.metadata.get(
self.FILE_MODE, self.default_file_mode)

with open(filepath, file_mode) as f:
f.write(str(record.payload)+'\n')

metadata = {
FileOutlet.FILEPATH: 'outputs/random_ints.txt',
FileOutlet.FILE_MODE: 'a'

}
random_int_inlet = RandomIntInlet(metadata=metadata)
file_outlet = FileOutlet()

link = Link(random_int_inlet,
file_outlet,
interval=timedelta(seconds=2),
tags='file_outlet')

planner = ApsPlanner(link)
planner.start()

2.4.6 Basic metadata

This example demonstrates basic usage of Global metadata, used by a PrintOutlet created in the Basic Outlet example.

1. Create the ConditionalPrintOutlet implementing Outlet class. This outlet will accept one metadata
key:

• ConditionalPrintOutlet.SHOULD_PRINT - whether record should be printed.

class ConditionalPrintOutlet(Outlet):

SHOULD_PRINT = 'ConditionalPrintOutlet.SHOULD_PRINT'
"""Whether records should be printed or skipped."""

40 Chapter 2. Features

databay, Release 0.3.0

1. Implement push method, looping over all records and printing them if ConditionalPrintOutlet.
SHOULD_PRINT is set:

def push(self, records: [Record], update):
for record in records:

if record.metadata.get(self.SHOULD_PRINT):
print(update, record)

1. Instantiate two inlets, one that always prints, other that never prints:

random_int_inlet_on = RandomIntInlet(
metadata={ConditionalPrintOutlet.SHOULD_PRINT: True})

random_int_inlet_off = RandomIntInlet(
metadata={ConditionalPrintOutlet.SHOULD_PRINT: False})

1. Instantiate ConditionalPrintOutlet and add all nodes to a link

print_outlet = ConditionalPrintOutlet()

link = Link([random_int_inlet_on, random_int_inlet_off],
print_outlet,
interval=timedelta(seconds=0.5),
tags='should_print_metadata')

1. Add to a planner and schedule.

planner = SchedulePlanner(link, refresh_interval=0.5)
planner.start()

Output:

>>> should_print_metadata.0 Record(payload=44, metadata={'PrintOutlet.SHOULD_PRINT':
→˓True, '__inlet__': "RandomIntInlet(metadata:{'PrintOutlet.SHOULD_PRINT': True})"})
>>> should_print_metadata.1 Record(payload=14, metadata={'PrintOutlet.SHOULD_PRINT':
→˓True, '__inlet__': "RandomIntInlet(metadata:{'PrintOutlet.SHOULD_PRINT': True})"})
>>> should_print_metadata.2 Record(payload=54, metadata={'PrintOutlet.SHOULD_PRINT':
→˓True, '__inlet__': "RandomIntInlet(metadata:{'PrintOutlet.SHOULD_PRINT': True})"})
>>> ...

On each transfer ConditionalPrintOutlet prints records incoming only from the random_int_inlet_on
that was constructed with global metadata that allows printing.

Full example:

from datetime import timedelta

from databay import Link
from databay.inlets import RandomIntInlet
from databay.outlet import Outlet
from databay.planners import SchedulePlanner
from databay.record import Record

class ConditionalPrintOutlet(Outlet):

SHOULD_PRINT = 'ConditionalPrintOutlet.SHOULD_PRINT'
"""Whether records should be printed or skipped."""

(continues on next page)

2.4. Examples 41

databay, Release 0.3.0

(continued from previous page)

def push(self, records: [Record], update):
for record in records:

if record.metadata.get(self.SHOULD_PRINT):
print(update, record)

random_int_inlet_on = RandomIntInlet(
metadata={ConditionalPrintOutlet.SHOULD_PRINT: True})

random_int_inlet_off = RandomIntInlet(
metadata={ConditionalPrintOutlet.SHOULD_PRINT: False})

print_outlet = ConditionalPrintOutlet()

link = Link([random_int_inlet_on, random_int_inlet_off],
print_outlet,
interval=timedelta(seconds=0.5),
tags='should_print_metadata')

planner = SchedulePlanner(link, refresh_interval=0.5)
planner.start()

2.4.7 Basic asynchronous

This tutorial showcases a simple usage of asynchronous inlets and outlets.

1. Create an asynchronous inlet.

class RandomIntInlet(Inlet):

async def pull(self, update):

simulate a long-taking operation
await asyncio.sleep(0.5)

execute
r = random.randint(0, 100)

_LOGGER.debug(f'{update} produced:{r}')
return r

1. Create an asynchronous outlet. Note that one asynchronous wait will be simulated for each record consumed.

class PrintOutlet(Outlet):

async def push(self, records: [Record], update):
_LOGGER.debug(f'{update} push starts')

create an asynchronous task for each record
tasks = [self.print_task(record, update) for record in records]

await all print tasks
await asyncio.gather(*tasks)

async def print_task(self, record, update):

(continues on next page)

42 Chapter 2. Features

databay, Release 0.3.0

(continued from previous page)

simulate a long-taking operation
await asyncio.sleep(0.5)

execute
_LOGGER.debug(f'{update} consumed:{record.payload}')

1. Instantiate three asynchronous inlets and one asynchronous outlet.

random_int_inletA = RandomIntInlet()
random_int_inletB = RandomIntInlet()
random_int_inletC = RandomIntInlet()
print_outlet = PrintOutlet()

link = Link([random_int_inletA, random_int_inletB, random_int_inletC],
print_outlet,
interval=timedelta(seconds=2),
tags='async')

1. Add to a planner and schedule.

planner = SchedulePlanner(link)
planner.start()

Output:

>>> 2020-08-04 22:40:41.242|D| async.0 transfer
>>> 2020-08-04 22:40:41.754|D| async.0 produced:20
>>> 2020-08-04 22:40:41.754|D| async.0 produced:55
>>> 2020-08-04 22:40:41.754|D| async.0 produced:22
>>> 2020-08-04 22:40:41.755|D| async.0 push starts
>>> 2020-08-04 22:40:42.267|D| async.0 consumed:20
>>> 2020-08-04 22:40:42.267|D| async.0 consumed:55
>>> 2020-08-04 22:40:42.267|D| async.0 consumed:22
>>> 2020-08-04 22:40:42.267|D| async.0 done

>>> 2020-08-04 22:40:43.263|D| async.1 transfer
>>> 2020-08-04 22:40:43.776|D| async.1 produced:10
>>> 2020-08-04 22:40:43.776|D| async.1 produced:4
>>> 2020-08-04 22:40:43.776|D| async.1 produced:90
>>> 2020-08-04 22:40:43.777|D| async.1 push starts
>>> 2020-08-04 22:40:44.292|D| async.1 consumed:10
>>> 2020-08-04 22:40:44.292|D| async.1 consumed:4
>>> 2020-08-04 22:40:44.292|D| async.1 consumed:90
>>> 2020-08-04 22:40:44.292|D| async.1 done

On each transfer, two asynchronous operations take place:

• First, all inlets are simultaneously awaiting before producing their data.

• Once all data from inlets is gathered, the second stage commences where the outlet simultaneously awaits for
each record before printing it out.

This simulates a delay happening either in the inlets or outlets. Note how one transfer takes approximately a second to
complete, despite executing six operations each requiring 0.5 seconds of sleep. If this was to execute synchronously,
the entire transfer would take around 3 seconds to complete.

Full example:

2.4. Examples 43

databay, Release 0.3.0

import asyncio
import logging

from databay import Link, Outlet, Record
from databay.planners import SchedulePlanner
from datetime import timedelta
from databay import Inlet
import random

_LOGGER = logging.getLogger('databay.basic_asynchronous')
logging.getLogger('databay').setLevel(logging.DEBUG)

class RandomIntInlet(Inlet):

async def pull(self, update):

simulate a long-taking operation
await asyncio.sleep(0.5)

execute
r = random.randint(0, 100)

_LOGGER.debug(f'{update} produced:{r}')
return r

class PrintOutlet(Outlet):

async def push(self, records: [Record], update):
_LOGGER.debug(f'{update} push starts')

create an asynchronous task for each record
tasks = [self.print_task(record, update) for record in records]

await all print tasks
await asyncio.gather(*tasks)

async def print_task(self, record, update):

simulate a long-taking operation
await asyncio.sleep(0.5)

execute
_LOGGER.debug(f'{update} consumed:{record.payload}')

random_int_inletA = RandomIntInlet()
random_int_inletB = RandomIntInlet()
random_int_inletC = RandomIntInlet()
print_outlet = PrintOutlet()

link = Link([random_int_inletA, random_int_inletB, random_int_inletC],
print_outlet,
interval=timedelta(seconds=2),
tags='async')

(continues on next page)

44 Chapter 2. Features

databay, Release 0.3.0

(continued from previous page)

planner = SchedulePlanner(link)
planner.start()

2.4.8 Elasticsearch Outlet

In this example we create an implementation of Outlet that indexes records as documents to a running Elasticsearch
instance.

Note: this example assumes that Elasticsearch is correctly configured and that the index you are indexing documents
to exists with the appropriate mappings. For more details see the official Elasticsearch Python client

1. Extend the Outlet with new parameters required when constructing: es_client - an instance of the elas-
ticsearch python client and index_name the name of a pre-existing index in the running cluster.

class ElasticsearchIndexerOutlet(Outlet):
" An example outlet for indexing text documents from any `Inlet`."

def __init__(self,
es_client: elasticsearch.Elasticsearch,
index_name: str,
overwrite_documents: bool = True):

super().__init__()
self.es_client = es_client
self.index_name = index_name

if true existing documents will be overwritten
otherwise we will skip indexing and log that document id exists in index.
self.overwrite_documents = overwrite_documents

if not self.es_client.indices.exists(self.index_name):
raise RuntimeError(f"Index '{self.index_name}' does not exist ")

1. In this implementation of the push method there are a few custom behaviors specified. As we iterate over every
incoming record:

• We use the dict keys from the current record’s payload as our unique document ID.

• The flag self.overwrite_documents determines whether we will check if an id already exists.

• If self.overwrite_documents is True we simply index the document and _id without doing any
check.

• Otherwise we use the client to check if _id exists in the index. If it does we skip and log that it already
exists. Otherwise it is indexed as normal.

def push(self, records: List[Record], update):
for record in records:

payload = record.payload

using dict keys from payload as unique id for index
for k in payload.keys():

_id = k
text = payload[k]
body = {"my_document": text}
if self.overwrite_documents:

(continues on next page)

2.4. Examples 45

https://elasticsearch-py.readthedocs.io

databay, Release 0.3.0

(continued from previous page)

self.es_client.index(
self.index_name, body, id=_id)

_LOGGER.info(f"Indexed document with id {_id}")

else:
if self.es_client.exists(self.index_name, _id):

log that already exists
_LOGGER.info(

f"Document already exists for id {_id}. Skipping.")
else:

self.es_client.index(
self.index_name, body, id=_id)

_LOGGER.info(f"Indexed document with id {_id}")

1. This simple Inlet takes a list of strings as its main parameter. In its pull method it randomly selects one
and returns the string and an incrementing id as a dict. We’ll use this to pass documents to our Elasticsearch
Outlet.

class DummyTextInlet(Inlet):
"A simple `Inlet` that randomly pulls a string from a list of strings."

def __init__(self, text: list, *args, **kwargs):
super().__init__(*args, **kwargs)
self.text = text
self._id = 0

def pull(self, update):
text_selection = random.choice(self.text)
self._id += 1
time.sleep(1)
return {self._id: text_selection}

1. Instantiate our simple Inlet as well as an instance of ElasticsearchIndexerOutlet with the default
parameter for overwrite_documents.

• We use the official Elasticsearch Python client for es_client.

• This example assumes my-test-index exists already in our elasticsearch cluster.

es_client = elasticsearch.Elasticsearch(timeout=30)

text_inlet = DummyTextInlet(TEXT.split("."))
elasticsearch_outlet = ElasticsearchIndexerOutlet(

es_client, "my-test-index")

1. Tie it all together using Link AND Planner

• The link is setup to index a new document every 2 seconds.

link = Link(text_inlet,
elasticsearch_outlet,
interval=2,
tags='elasticsearch_outlet')

planner = ApsPlanner(link)
planner.start()

46 Chapter 2. Features

databay, Release 0.3.0

Output:

• From the logs we can see that the records are being written into our Elasticsearch index.

>>> Indexed document with id 1
>>> Indexed document with id 2
>>> Indexed document with id 3
>>> Indexed document with id 4
>>> Indexed document with id 5
>>> Indexed document with id 6
>>> Indexed document with id 7
>>> Indexed document with id 8

Output (if overwrite_documents is set to False):

• From the logs we can see that the record ID’s so far have already been written into our Elasticsearch index.

>>> Document already exists for id 1. Skipping.
>>> Document already exists for id 2. Skipping.
>>> Document already exists for id 3. Skipping.
>>> Document already exists for id 4. Skipping.
>>> Document already exists for id 5. Skipping.
>>> Document already exists for id 6. Skipping.
>>> Document already exists for id 7. Skipping.
>>> Document already exists for id 8. Skipping.

Full example:

import logging
import random
import time
from typing import List

import elasticsearch
from databay import Inlet, Link, Outlet
from databay.planners import ApsPlanner
from databay.record import Record

TEXT = """
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Phasellus ex erat, viverra tincidunt tempus eget, hendrerit sed ligula.
Quisque mollis nibh in imperdiet porttitor. Nulla bibendum lacus et est lobortis
→˓porta.
Nulla sed ligula at odio volutpat consectetur. Sed quis augue ac magna porta
→˓imperdiet interdum eu velit.
Integer pretium ultrices urna, id viverra mauris ultrices ut. Etiam aliquet tellus
→˓porta nisl eleifend, non hendrerit nisl sodales.
Aliquam eget porttitor enim.
"""

_LOGGER = logging.getLogger('databay.elasticsearch_outlet')

class ElasticsearchIndexerOutlet(Outlet):
" An example outlet for indexing text documents from any `Inlet`."

def __init__(self,
es_client: elasticsearch.Elasticsearch,
index_name: str,

(continues on next page)

2.4. Examples 47

databay, Release 0.3.0

(continued from previous page)

overwrite_documents: bool = True):
super().__init__()
self.es_client = es_client
self.index_name = index_name

if true existing documents will be overwritten
otherwise we will skip indexing and log that document id exists in index.
self.overwrite_documents = overwrite_documents

if not self.es_client.indices.exists(self.index_name):
raise RuntimeError(f"Index '{self.index_name}' does not exist ")

def push(self, records: List[Record], update):
for record in records:

payload = record.payload

using dict keys from payload as unique id for index
for k in payload.keys():

_id = k
text = payload[k]
body = {"my_document": text}
if self.overwrite_documents:

self.es_client.index(
self.index_name, body, id=_id)

_LOGGER.info(f"Indexed document with id {_id}")

else:
if self.es_client.exists(self.index_name, _id):

log that already exists
_LOGGER.info(

f"Document already exists for id {_id}. Skipping.")
else:

self.es_client.index(
self.index_name, body, id=_id)

_LOGGER.info(f"Indexed document with id {_id}")

class DummyTextInlet(Inlet):
"A simple `Inlet` that randomly pulls a string from a list of strings."

def __init__(self, text: list, *args, **kwargs):
super().__init__(*args, **kwargs)
self.text = text
self._id = 0

def pull(self, update):
text_selection = random.choice(self.text)
self._id += 1
time.sleep(1)
return {self._id: text_selection}

_LOGGER.setLevel(logging.INFO)

es_client = elasticsearch.Elasticsearch(timeout=30)

(continues on next page)

48 Chapter 2. Features

databay, Release 0.3.0

(continued from previous page)

text_inlet = DummyTextInlet(TEXT.split("."))
elasticsearch_outlet = ElasticsearchIndexerOutlet(

es_client, "my-test-index")

link = Link(text_inlet,
elasticsearch_outlet,
interval=2,
tags='elasticsearch_outlet')

planner = ApsPlanner(link)
planner.start()

2.4.9 Twitter Inlet

In this example we create an implementation of an Inlet that connects to the Twitter API and either listens for new
tweets for a specific user or to the home timeline for an authenticated account.

Note: this example assumes that the Tweepy client is correctly configured and that the Twitter account is registered to
use the API. For more details on Tweepy click here.

1. Extend the Inlet by passing in an instance of the Tweepy client api. Depending on the use case users can
also pass in user if they want to run the Inlet on a specific username.

class TwitterInlet(Inlet):
"""
An implementation of an `Inlet` that uses the Tweepy (https://www.tweepy.org/)
Twitter client to pull tweets from either a specific users' timeline or the
home timeline belonging to an authenticated `tweepy.API` instance.
"""

def __init__(self, api: tweepy.API, user: str = None, most_recent_id=None, *args,
→˓**kwargs):

super().__init__(*args, **kwargs)
self.api = api
self.user = user

this will ensure we only every pull tweets that haven't been handled
self.most_recent_id = most_recent_id

sets flag indicating whether we are pulling from as single user
or from the home timeline.
if self.user is None:

self.is_user_timeline = False
else:

self.is_user_timeline = True

1. For the pull method we perform a number of configuration specific checks:

• If the flag self.is_user_timeline is True we’ll be using the user_timeline method of the
Tweepy API. This pulls tweets from a specific users’ timeline rather than the registered accounts’ home
timeline.

• Additionally there is a check in both conditional branches that checks for self.most_recent_id, if
a recent ID exists then this ID is passed an additional parameter to Tweepy. This will ensure that only new
tweets since the last pull are fetched.

• self.most_recent_id is assigned by taking the ID from the first tweet in the results list.

2.4. Examples 49

http://docs.tweepy.org/en/latest/

databay, Release 0.3.0

def pull(self, update):
if self.is_user_timeline:

if self.most_recent_id is not None:
public_tweets = self.api.user_timeline(

self.user, since_id=self.most_recent_id)
else:

public_tweets = self.api.user_timeline(
self.user)

else:
if self.most_recent_id is not None:

public_tweets = self.api.home_timeline(
since_id=self.most_recent_id)

else:
public_tweets = self.api.home_timeline()

if len(public_tweets) > 0:
0th tweet is most recent
self.most_recent_id = public_tweets[0].id

tweets = []
for tweet in public_tweets:

tweets.append({"user": tweet.user.screen_name, "text": tweet.text})
return tweets

1. To authenticate Tweepy correctly the appropriate keys and secrets must be passed to the API.

auth = tweepy.OAuthHandler(
consumer_key, consumer_secret) # user defined values

auth.set_access_token(access_token, access_token_secret) # user defined values

extra params here protect against twitter rate limiting
set link intervals with this in mind
for more on twitter rate limiting see https://developer.twitter.com/en/docs/rate-
→˓limits
api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True)

1. The TwitterInlet can then be instantiated as seen below. We are using the PrintOutlet to print the
results of each successful pull.

• Note: Be mindful of the interval you pass to Link as the Twitter API has strict rate limiting policies.

create TwitterUserInlet() pointed at a specific account name
twitter_user_inlet = TwitterInlet(api, "@BarackObama")

link = Link(twitter_user_inlet, PrintOutlet(only_payload=True),
interval=30, tags='twitter_timeline')

planner = SchedulePlanner(link)
planner.start()

Output:

>>> {'user': 'BarackObama', 'text': 'Georgia’s runoff election will determine whether
→˓the American people have a Senate that’s actually fighting for the... https://t.co/
→˓igUiRzxNxe'}
>>> {'user': 'BarackObama', 'text': 'Here’s a great way to call voters in Georgia and
→˓help them get ready to vote. A couple hours this weekend could hel... https://t.co/
→˓x6Nc8w7F38'}

(continues on next page)

50 Chapter 2. Features

databay, Release 0.3.0

(continued from previous page)

>>> {'user': 'BarackObama', 'text': "Happy Hanukkah to all those celebrating around
→˓the world. This year has tested us all, but it's also clarified what... https://t.
→˓co/k2lzUQ9LNm"}
>>> {'user': 'BarackObama', 'text': 'In A Promised Land, I talk about the decisions I
→˓had to make during the first few years of my presidency. Here are... https://t.co/
→˓KbE2FDStYr'}
>>> {'user': 'BarackObama', 'text': "With COVID-19 cases reaching an all-time high
→˓this week, we've got to continue to do our part to protect one anothe... https://t.
→˓co/Gj0mEFfuLY"}
>>> {'user': 'BarackObama', 'text': 'To all of you in Georgia, today is the last day
→˓to register to vote in the upcoming runoff election. Take a few min... https://t.co/
→˓Jif3Gd7NpQ'}

Full example:

import os

import tweepy
from databay import Inlet, Link
from databay.outlets import PrintOutlet
from databay.planners import SchedulePlanner

class TwitterInlet(Inlet):
"""
An implementation of an `Inlet` that uses the Tweepy (https://www.tweepy.org/)
Twitter client to pull tweets from either a specific users' timeline or the
home timeline belonging to an authenticated `tweepy.API` instance.
"""

def __init__(self, api: tweepy.API, user: str = None, most_recent_id=None, *args,
→˓**kwargs):

super().__init__(*args, **kwargs)
self.api = api
self.user = user

this will ensure we only every pull tweets that haven't been handled
self.most_recent_id = most_recent_id

sets flag indicating whether we are pulling from as single user
or from the home timeline.
if self.user is None:

self.is_user_timeline = False
else:

self.is_user_timeline = True

def pull(self, update):
if self.is_user_timeline:

if self.most_recent_id is not None:
public_tweets = self.api.user_timeline(

self.user, since_id=self.most_recent_id)
else:

public_tweets = self.api.user_timeline(
self.user)

else:
if self.most_recent_id is not None:

public_tweets = self.api.home_timeline(
(continues on next page)

2.4. Examples 51

databay, Release 0.3.0

(continued from previous page)

since_id=self.most_recent_id)
else:

public_tweets = self.api.home_timeline()

if len(public_tweets) > 0:
0th tweet is most recent
self.most_recent_id = public_tweets[0].id

tweets = []
for tweet in public_tweets:

tweets.append({"user": tweet.user.screen_name, "text": tweet.text})
return tweets

gets twitter api secrets and keys from environment vars
consumer_key = os.getenv("twitter_key")
consumer_secret = os.getenv("twitter_secret")
access_token = os.getenv("twitter_access_token")
access_token_secret = os.getenv("twitter_access_token_secret")

auth = tweepy.OAuthHandler(
consumer_key, consumer_secret) # user defined values

auth.set_access_token(access_token, access_token_secret) # user defined values

extra params here protect against twitter rate limiting
set link intervals with this in mind
for more on twitter rate limiting see https://developer.twitter.com/en/docs/rate-
→˓limits
api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True)

create TwitterUserInlet() pointed at a specific account name
twitter_user_inlet = TwitterInlet(api, "@BarackObama")

link = Link(twitter_user_inlet, PrintOutlet(only_payload=True),
interval=30, tags='twitter_timeline')

planner = SchedulePlanner(link)
planner.start()

2.5 Databay API Reference

2.5.1 databay.inlets

databay.inlets.file_inlet

Contents:

FileInletMode Enum defining the mode in which the FileInlet should read
the file.

FileInlet Inlet producing data by reading a file.

52 Chapter 2. Features

databay, Release 0.3.0

class databay.inlets.file_inlet.FileInletMode
databay.inlets.file_inlet.FileInletMode

Enum defining the mode in which the FileInlet should read the file.

Create and return a new object. See help(type) for accurate signature.

Bases: enum.Enum

LINE :str = line
Read file one line per transfer. This will open the file and hold it open for as long as the planner is running.

FILE :str = file
Read the entire file on each transfer. This will only open the file briefly during the transfer.

class databay.inlets.file_inlet.FileInlet(filepath: str, read_mode: FileInletMode =
FileInletMode.LINE, *args, **kwargs)

databay.inlets.file_inlet.FileInlet

Inlet producing data by reading a file.

Parameters

• filepath (str) – Path to the file.

• read_mode (FileInletMode) – Mode in which the file is to be read.

Bases: databay.Inlet

pull(self, update)
Produce data by reading a file in the mode specified.

Raises FileNotFoundError if file does not exists.

Returns contents of the file.

on_start(self)
If read mode is FileInletMode.LINE, open the file and hold it open for reading.

Raises FileNotFoundError if file does not exists.

on_shutdown(self)
If read mode is FileInletMode.LINE, close the file.

databay.inlets.http_inlet

Warning: HttpInlet requires AIOHTTP to function. Please install required dependencies using:

pip install "databay[HttpInlet]"

class databay.inlets.http_inlet.HttpInlet(url: str, json: str = True, cacert: Optional[str]
= None, params: Optional[dict] = None, head-
ers: Optional[LooseHeaders] = None, *args,
**kwargs)

databay.inlets.http_inlet.HttpInlet

Inlet for pulling data from a specified URL using aiohttp.

Parameters

• url (str) – URL that should be queried for data.

2.5. Databay API Reference 53

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.aiohttp.org/en/stable/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientSession.get
https://docs.python.org/3/library/stdtypes.html#str

databay, Release 0.3.0

• json (bool) – Whether response should be parsed as JSON. True

• cacert (str) – Path to cacert TLS certificate bundle. None

• params (dict) – Parameters for the request. None

• headers (LooseHeaders) – Headers for the request. None

Bases: databay.inlet.Inlet

pull(self, update)→ Union[List[Record], str]
async

Asynchronously pulls data from the specified URL using aiohttp.ClientSession.get

Parameters update (Update) – Update object representing the particular Link transfer.

Returns Single or multiple records produced.

Return type Record or list[Record]

databay.inlets.null_inlet

class databay.inlets.null_inlet.NullInlet(metadata: dict = None)
databay.inlets.null_inlet.NullInlet

Inlet that doesn’t do anything, essentially a ‘no-op’ inlet.

Parameters metadata (dict) – Global metadata that will be attached to each record generated
by this inlet. It can be overridden or appended to by providing metadata when creating a record
using new_record() function. None

Bases: databay.Inlet

pull(self, update)
Doesn’t produce anything.

Returns empty list

databay.inlets.random_int_inlet

class databay.inlets.random_int_inlet.RandomIntInlet(min: int = 0, max: int = 100,
*args, **kwargs)

databay.inlets.random_int_inlet.RandomIntInlet

Inlet that will generate a random integer within the specified range.

Parameters

• min (int) – Lower boundary of the random range.

• max (int) – Upper boundary of the random range.

Bases: databay.Inlet

pull(self, update)
Produces a random integer within the specified range.

Parameters update (Update) – Update object representing the particular Link update run.

Returns Single or multiple records produced.

Return type Record or list[Record]

54 Chapter 2. Features

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientSession.get
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

databay, Release 0.3.0

2.5.2 databay.misc

databay.misc.inlet_tester

Contents:

for_each_inlet Runs the test for each inlet returned from InletTester.
get_inlet

InletTester Utility class used for testing concrete implementations of
Inlet.

databay.misc.inlet_tester.for_each_inlet(fn)
Runs the test for each inlet returned from InletTester.get_inlet

class databay.misc.inlet_tester.InletTester(methodName='runTest')
databay.misc.inlet_tester.InletTester

Utility class used for testing concrete implementations of Inlet.

Create an instance of the class that will use the named test method when executed. Raises a ValueError if the
instance does not have a method with the specified name.

Bases: unittest.TestCase

get_inlet(self)
Implement this method to return instances of your inlet class.

setUp(self)
Hook method for setting up the test fixture before exercising it.

test_new_record(self)
for_each_inlet

Test creating new records and passing local metadata.

test_new_record_override_global(self)
for_each_inlet

Test creating new records and overriding global metadata.

test_dont_read_metadata(self, update)
for_each_inlet

Test creating new records and overriding global metadata.

test_pull(self, update)
for_each_inlet

Test pulling data from the inlet.

2.5. Databay API Reference 55

https://docs.python.org/3/library/unittest.html#unittest.TestCase

databay, Release 0.3.0

2.5.3 databay.outlets

databay.outlets.csv_outlet

class databay.outlets.csv_outlet.CsvOutlet(default_filepath: str, default_file_mode: str =
'a', *args, **kwargs)

databay.outlets.csv_outlet.CsvOutlet

Outlet that writes records to a csv file.

Parameters

• default_filepath (str) – Filepath of the default csv file to write records to.

• default_file_mode (str) – Default write mode to use when writing into the csv file.

Bases: databay.outlet.Outlet

Record metadata supported:

CSV_FILE :MetadataKey = CsvOutlet.CSV_FILE
Filepath of the csv file to write records to.

FILE_MODE :MetadataKey = CsvOutlet.FILE_MODE
Write mode to use when writing into the csv file.

push(self, records: [Record], update)
Writes records to a csv file.

Parameters

• records (list[Record]) – List of records generated by inlets. Each top-level element of
this array corresponds to one inlet that successfully returned data. Note that inlets could
return arrays too, making this a nested array.

• update (Update) – Update object representing the particular Link transfer.

databay.outlets.file_outlet

class databay.outlets.file_outlet.FileOutlet(default_filepath: str, default_file_mode: str
= 'a', default_encoding: str = 'utf-8', *args,
**kwargs)

databay.outlets.file_outlet.FileOutlet

Outlet that writes records to a file.

Parameters

• default_filepath (str) – Filepath of the default file to write records to.

• default_file_mode (str) – Default write mode to use when writing into the file.

• default_encoding (str) – Default file encoding when writing into a file. utf-8

Bases: databay.outlet.Outlet

Record metadata supported:

FILEPATH :MetadataKey = FileOutlet.FILEPATH
Filepath of the file to write to.

FILE_MODE :MetadataKey = FileOutlet.FILE_MODE
Write mode to use when writing into the file.

56 Chapter 2. Features

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

databay, Release 0.3.0

FILE_ENCODING :MetadataKey = FileOutlet.FILE_ENCODING
Encoding to use when writing into the file.

push(self, records: [Record], update)
Writes records to a file.

Parameters

• records (list[Record]) – List of records generated by inlets. Each top-level element of
this array corresponds to one inlet that successfully returned data. Note that inlets could
return arrays too, making this a nested array.

• update (Update) – Update object representing the particular Link transfer.

databay.outlets.mongo_outlet

Warning: MongoOutlet requires PyMongo to function. Please install required dependencies using:

pip install "databay[MongoOutlet]"

Contents:

MongoCollectionNotFound Raised when requested collection does not exist in the
database.

ensure_connection Ensure the MongoDB connection is established before run-
ning the function.

MongoOutlet Outlet for pushing data into a MongoDB instance. Pushes
are executed synchronously.

exception databay.outlets.mongo_outlet.MongoCollectionNotFound
databay.outlets.mongo_outlet.MongoCollectionNotFound

Raised when requested collection does not exist in the database.

Initialize self. See help(type(self)) for accurate signature.

Bases: Exception

databay.outlets.mongo_outlet.ensure_connection(fn)
Ensure the MongoDB connection is established before running the function.

Parameters fn (Callable) – Function to decorate

class databay.outlets.mongo_outlet.MongoOutlet(database_name: str = 'databay', col-
lection: str = 'default_collection', host:
str = None, port: str = None, *args,
**kwargs)

databay.outlets.mongo_outlet.MongoOutlet

Outlet for pushing data into a MongoDB instance. Pushes are executed synchronously.

Parameters

• database_name (str) – Name of the MongoDB database to write to. 'databay'

• collection (str) – Global name of the collection to write to. This can be overwritten by
records’ metadata.MONGODB_COLLECTION parameter. 'default_collection'

2.5. Databay API Reference 57

https://pymongo.readthedocs.io/en/stable/
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

databay, Release 0.3.0

• host (str) – Address of MongoDB host. None (PyMongo defaults to 'localhost')

• port (int) – Port of the MongoDB host. None (PyMongo defaults to 27017)

Bases: databay.outlet.Outlet

Record metadata supported:

MONGODB_COLLECTION :MetadataKey = MongoOutlet.MONGODB_COLLECTION
Name of collection to write to.

push(self, records: [Record], update)
ensure_connection

Write records into the database. Writes are executed synchronously.

Parameters

• records (list[Record]) – List of records generated by inlets. Each top-level element of
this array corresponds to one inlet that successfully returned data. Note that inlets could
return arrays too, making this a nested array.

• update (Update) – Update object representing the particular Link transfer.

connect(self, database_name: str = None)→ bool
Connect to the specified database. Returns True if already connected to the specified database. Disconnects
from any existing databases if the specified database is different.

Parameters database_name (str) – Name of the database to connect to. None (Connects
to default database name if not specified`)

Returns Returns True if already connected to the database specified.

Return type bool

disconnect(self)
Disconnect from the database if currently connected.

on_start(self)
Connect to the MongoDB host on start.

on_shutdown(self)
Disconnect from the MongoDB host on shutdown.

databay.outlets.null_outlet

class databay.outlets.null_outlet.NullOutlet(processors: Union[callable, List[callable]]
= None)

databay.outlets.null_outlet.NullOutlet

Outlet that doesn’t do anything, essentially a ‘no-op’ outlet.

Parameters processors (callable or list[callable]) – Processors of this outlet. None

Bases: databay.outlet.Outlet

push(self, records: [Record], update)
async

Doesn’t do anything.

58 Chapter 2. Features

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#callable

databay, Release 0.3.0

databay.outlets.print_outlet

class databay.outlets.print_outlet.PrintOutlet(only_payload: bool = False,
skip_update: bool = False, *args,
**kwargs)

databay.outlets.print_outlet.PrintOutlet

Outlet that will print all records one by one.

Parameters

• only_payload (bool) – If True, prints only the payload of records.

• skip_update (bool) – If True, Update prefix will not be added to the print.

Bases: databay.outlet.Outlet

push(self, records: [Record], update)
async

Prints the records.

Parameters

• records (list[Record]) – List of records generated by inlets. Each top-level element of
this array corresponds to one inlet that successfully returned data. Note that inlets could
return arrays too, making this a nested array.

• update (Update) – Update object representing the particular Link update run.

2.5.4 databay.planners

databay.planners.aps_planner

See also:

• Scheduling to learn more about scheduling in Databay.

• BasePlanner for the remaining interface of this planner.

Contents:

ApsPlanner Planner implementing scheduling using the Advanced
Python Scheduler. Scheduling sets the APS Job as links’
job.

APSPlanner Planner implementing scheduling using the Advanced
Python Scheduler. Scheduling sets the APS Job as links’
job.

class databay.planners.aps_planner.ApsPlanner(links: Union[Link, List[Link]] = None,
threads: int = 30, executors_override:
dict = None, job_defaults_override: dict
= None, ignore_exceptions: bool = False,
catch_exceptions: bool = None, immedi-
ate_transfer: bool = True)

databay.planners.aps_planner.ApsPlanner

Planner implementing scheduling using the Advanced Python Scheduler. Scheduling sets the APS Job as
links’ job.

2.5. Databay API Reference 59

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://apscheduler.readthedocs.io/en/stable/index.html
https://apscheduler.readthedocs.io/en/stable/index.html
https://apscheduler.readthedocs.io/en/stable/modules/job.html#apscheduler.job.Job
https://apscheduler.readthedocs.io/en/stable/index.html
https://apscheduler.readthedocs.io/en/stable/index.html
https://apscheduler.readthedocs.io/en/stable/modules/job.html#apscheduler.job.Job
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://apscheduler.readthedocs.io/en/stable/index.html
https://apscheduler.readthedocs.io/en/stable/modules/job.html#apscheduler.job.Job

databay, Release 0.3.0

Parameters

• links (Link or list[Link]) – Links that should be added and scheduled. None

• threads (int) – Number of threads available for job execution. Each link will be run on
a separate thread job. 30

• executors_override (dict) – Overrides for executors option of APS configuration
None

• job_defaults_override (dict) – Overrides for job_defaults option of APS config-
uration None

• ignore_exceptions (bool) – Whether exceptions should be ignored or halt the plan-
ner. False

• immediate_transfer (bool) – Whether planner should execute one transfer immedi-
ately upon starting. True

Bases: databay.base_planner.BasePlanner

start(self)
Start this planner. Calls APS Scheduler.start()

See Start and Shutdown to learn more about starting and shutdown.

pause(self)
Pause this planner. Calls APScheduler.pause()

resume(self)
Resume this planner. Calls APScheduler.resume()

shutdown(self, wait: bool = True)
Shutdown this planner. Calls APScheduler.shutdown()

See Start and Shutdown to learn more about starting and shutdown.

Parameters wait (bool) – Whether to wait until all currently executing jobs have finished.
True

purge(self)
Unschedule and clear all links. It can be used while planner is running. APS automatically removes jobs,
so we only clear the links.

running(self)
property

Whether this planner is currently running. Changed by calls to start and shutdown.

Returns State of this planner

Return type bool

class databay.planners.aps_planner.APSPlanner(*args, **kwargs)
databay.planners.aps_planner.APSPlanner

Planner implementing scheduling using the Advanced Python Scheduler. Scheduling sets the APS Job as
links’ job.

Parameters

• links (Link or list[Link]) – Links that should be added and scheduled. None

• threads (int) – Number of threads available for job execution. Each link will be run on
a separate thread job. 30

60 Chapter 2. Features

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://apscheduler.readthedocs.io/en/stable/userguide.html#configuring-the-scheduler
https://docs.python.org/3/library/stdtypes.html#dict
https://apscheduler.readthedocs.io/en/stable/userguide.html#configuring-the-scheduler
https://apscheduler.readthedocs.io/en/stable/userguide.html#configuring-the-scheduler
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://apscheduler.readthedocs.io/en/stable/modules/schedulers/base.html#apscheduler.schedulers.base.BaseScheduler.start
https://apscheduler.readthedocs.io/en/stable/modules/schedulers/base.html#apscheduler.schedulers.base.BaseScheduler.pause
https://apscheduler.readthedocs.io/en/stable/modules/schedulers/base.html#apscheduler.schedulers.base.BaseScheduler.resume
https://docs.python.org/3/library/functions.html#bool
https://apscheduler.readthedocs.io/en/stable/modules/schedulers/base.html#apscheduler.schedulers.base.BaseScheduler.shutdown
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://apscheduler.readthedocs.io/en/stable/index.html
https://apscheduler.readthedocs.io/en/stable/modules/job.html#apscheduler.job.Job
https://docs.python.org/3/library/functions.html#int

databay, Release 0.3.0

• executors_override (dict) – Overrides for executors option of APS configuration
None

• job_defaults_override (dict) – Overrides for job_defaults option of APS config-
uration None

• ignore_exceptions (bool) – Whether exceptions should be ignored or halt the plan-
ner. False

• immediate_transfer (bool) – Whether planner should execute one transfer immedi-
ately upon starting. True

Bases: databay.planners.aps_planner.ApsPlanner

databay.planners.schedule_planner

See also:

• Scheduling to learn more about scheduling in Databay.

• BasePlanner for the remaining interface of this planner.

Contents:

ScheduleIntervalError Raised when link interval is smaller than the Schedule re-
fresh interval.

SchedulePlanner Planner implementing scheduling using Schedule.
Scheduling sets the Schedule's Job as links’ job.

exception databay.planners.schedule_planner.ScheduleIntervalError
databay.planners.schedule_planner.ScheduleIntervalError

Raised when link interval is smaller than the Schedule refresh interval.

Initialize self. See help(type(self)) for accurate signature.

Bases: Exception

class databay.planners.schedule_planner.SchedulePlanner(links: Union[Link,
List[Link]] = None,
threads: int = 30, re-
fresh_interval: float = 1.0,
ignore_exceptions: bool =
False, catch_exceptions:
bool = None, immedi-
ate_transfer: bool =
True)

databay.planners.schedule_planner.SchedulePlanner

Planner implementing scheduling using Schedule. Scheduling sets the Schedule's Job as links’ job.

Parameters

• links (Link or list[Link]) – Links that should be added and scheduled. None

• threads (int) – Number of threads to use. 30

• refresh_interval (float) – Frequency at which this planner will scan over its links
and attempt to update them if necessary. Note that adding links with intervals smaller than
this value will raise a ScheduleIntervalError. 1.0

2.5. Databay API Reference 61

https://docs.python.org/3/library/stdtypes.html#dict
https://apscheduler.readthedocs.io/en/stable/userguide.html#configuring-the-scheduler
https://docs.python.org/3/library/stdtypes.html#dict
https://apscheduler.readthedocs.io/en/stable/userguide.html#configuring-the-scheduler
https://apscheduler.readthedocs.io/en/stable/userguide.html#configuring-the-scheduler
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://schedule.readthedocs.io/
https://schedule.readthedocs.io/en/stable/reference.html#schedule.Job
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://schedule.readthedocs.io/
https://schedule.readthedocs.io/en/stable/reference.html#schedule.Job
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

databay, Release 0.3.0

• ignore_exceptions (bool) – Whether exceptions should be ignored, or halt the plan-
ner. False

• immediate_transfer (bool) – Whether planner should execute one transfer immedi-
ately upon starting. True

Bases: databay.base_planner.BasePlanner

refresh_interval(self)→ float
property

Frequency at which this planner will scan over its links and attempt to update them if necessary. Note that
adding links with interval smaller than this value will raise a ScheduleIntervalError.

Returns Refresh interval frequency.

Return type float

start(self)
Start this planner. Links will start being scheduled based on their intervals after calling this method.
Creates a new thread pool if one doesn’t already exist.

See Start and Shutdown to learn more about starting and shutdown.

shutdown(self, wait: bool = True)
Stop this planner. Links will stop being scheduled after calling this method

See Start and Shutdown to learn more about starting and shutdown.

Parameters wait (bool) – Whether to wait until all currently executing jobs have finished.
True

running(self)
property

Whether this planner is currently running. If there are links transferring this may be set before all transfers
are complete. Changed by calls to start and shutdown.

Returns State of this planner

Return type bool

2.5.5 databay.support

databay.support.buffers

class databay.support.buffers.Buffer(count_threshold: int = None, time_threshold:
float = None, custom_controllers: Union[callable,
List[callable]] = None, on_reset: callable = None,
conjugate_controllers: bool = False)

databay.support.buffers.Buffer

Buffers are special built-in Processors. They allow you to temporarily accumulate records before passing them
over to outlets.

When processing records (see Processors) a Buffer will figure out whether records should be stored or released.
This is done by passing the list of records to Buffer’s internal callable functions called controllers.

Each controller performs different types of checks, returning True or False depending on whether records
should be released or stored respectively.

Parameters

62 Chapter 2. Features

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#callable

databay, Release 0.3.0

• count_threshold (int) – The number of records stored that when reached will com-
plete the count controller. When set to None it will disable the count controller. None

• time_threshold (float) – The number of seconds elapsed since the previous release
that when reached will complete the time controller. When set to None it will disable the
time controller. None

• custom_controllers (callable or list[callable]) – List of custom callable
controllers. None

• on_reset (callable) – Callback invoked when reset is called. None

• conjugate_controllers (bool) – Whether to release the records when any con-
troller returns True or to wait for all of them to complete before releasing records. False

get_controllers(self)
Return the list of currently active controllers.

Returns list of controllers

Return type list[callable]

reset(self)
Resets this buffer, resetting the controllers’ counters and emptying the list of records stored.

2.5.6 databay.base_planner

See also:

Extending BasePlanner to learn how to extend this class correctly.

class databay.base_planner.BasePlanner(links: Union[Link, List[Link]] = None, ig-
nore_exceptions: bool = False, immediate_transfer:
bool = True, shutdown_at_exit: bool = False)

databay.base_planner.BasePlanner

Base abstract class for a job planner. Implementations should handle scheduling link transfers based on
datetime.timedelta intervals.

Parameters

• links (Link or list[Link]) – Links that should be added and scheduled.

• ignore_exceptions (bool) – Whether exceptions should be ignored, or halt the plan-
ner. False

• immediate_transfer (bool) – Whether this planner should execute transfer once
immediately upon starting for all links that have Link.immediate_transfer set to
True. True

• shutdown_at_exit (bool) – Whether this planner should attempt to gracefully shut-
down if the app exists unexpectedly. False

Bases: abc.ABC

links(self)
property

Links currently handled by this planner.

Returns list[Link]

add_links(self, links: Union[Link, List[Link]])
Add new links to this planner. This can be run once planner is already running.

2.5. Databay API Reference 63

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/abc.html#abc.ABC

databay, Release 0.3.0

Parameters links (Link or list[Link]) – Links that should be added and scheduled.

remove_links(self, links: Link)
Remove links from this planner. This can be run once planner is already running.

Parameters links (Link or list[Link]) – Links that should be unscheduled and removed.

Raises MissingLinkError if link is not found.

start(self)
Start this planner. Links will start being scheduled based on their intervals after calling this method. The
exact methodology depends on the planner implementation used.

This will also loop over all links and call the on_start callback before starting the planner.

If BasePlanner.immediate_transfer is set to True, this function will additionally call Link.
transfer once for each link managed by this planner before starting.

See Start and Shutdown to learn more about starting and shutdown.

shutdown(self, wait: bool = True)
Shutdown this planner. Links will stop being scheduled after calling this method. Remaining link jobs
may still execute after calling this method depending on the concrete planner implementation.

This will also loop over all links and call the on_shutdown callback after shutting down the planner.

See Start and Shutdown to learn more about starting and shutdown.

purge(self)
Unschedule and clear all links. It can be used while planner is running.

running(self)
property

Whether this planner is currently running.

By default always returns True.

Override this property to indicate when the underlying scheduling functionality is currently running.

force_transfer(self)

2.5.7 databay.errors

Contents:

MissingLinkError Raised when providing a link that isn’t stored in planner.
ImplementationError Raised when concrete implementation is incorrect.
InvalidNodeError Raised when invalid node (inlet or outlet) is provided.

exception databay.errors.MissingLinkError
databay.errors.MissingLinkError

Raised when providing a link that isn’t stored in planner.

Initialize self. See help(type(self)) for accurate signature.

Bases: RuntimeError

exception databay.errors.ImplementationError
databay.errors.ImplementationError

Raised when concrete implementation is incorrect.

64 Chapter 2. Features

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError

databay, Release 0.3.0

Initialize self. See help(type(self)) for accurate signature.

Bases: RuntimeError

exception databay.errors.InvalidNodeError
databay.errors.InvalidNodeError

Raised when invalid node (inlet or outlet) is provided.

Initialize self. See help(type(self)) for accurate signature.

Bases: RuntimeError

2.5.8 databay.inlet

See also:

• Extending Inlets to learn how to extend this class correctly.

• Outlet representing the corresponding output of the data stream.

class databay.inlet.Inlet(metadata: dict = None)
databay.inlet.Inlet

Abstract class representing an input of the data stream.

Parameters metadata (dict) – Global metadata that will be attached to each record generated
by this inlet. It can be overridden or appended to by providing metadata when creating a record
using new_record() function. None

Bases: abc.ABC

metadata(self)
property

Global metadata that will be attached to each record generated by this inlet. It can be overridden or
appended to by providing metadata when creating a record using new_record() function.

Returns Metadata dictionary.

Return type dict

pull(self, update: da.Update)→ List[Record]
abstractmethod

Produce new data.

Override this method to define how this inlet will produce new data.

Parameters update (Update) – Update object representing the particular Link update run.

Returns List of records produced

Return type list[Record]

new_record(self, payload, metadata: dict = None)→ Record
Create a new Record. This should be the preferred way of creating new records.

Parameters

• payload (Any) – Data produced by this inlet.

• metadata (dict) – Local metadata that will override and/or append to the global meta-
data. It will be attached to the new record. None

Returns New record created

2.5. Databay API Reference 65

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

databay, Release 0.3.0

Return type Record

try_start(self)
Wrapper around on_start call that will ensure it only gets executed once.

on_start(self)
Called once per inlet just before the governing planner is about to start.

Override this method to provide starting functionality on this inlet.

try_shutdown(self)
Wrapper around on_shutdown call that will ensure it only gets executed once.

on_shutdown(self)
Called once per inlet just after the governing planner has shutdown.

Override this method to provide shutdown functionality on this inlet.

active(self)
property

Whether this inlet is active and ready to pull. This variable is set by the governing link to True on start
and to False on shutdown. False

Return type bool

2.5.9 databay.link

Contents:

Update Data structure representing one Link transfer. When con-
verted to string returns {tags}.{transfer_number}

Link Link in the relationship graph. Use this class to define re-
lationships between inlets and outlets.

class databay.link.Update(tags: List[str], transfer_number: int)
databay.link.Update

Data structure representing one Link transfer. When converted to string returns {tags}.
{transfer_number}

Parameters

• tags (List[str]) – Tags of the link, see: Link.

• transfer_number (int) – Incremental identifier of the current transfer.

class databay.link.Link(inlets: Union[Inlet, List[Inlet]], outlets: Union[Outlet, List[Outlet]], in-
terval: Union[datetime.timedelta, int, float], tags: Union[str, List[str]]
= None, copy_records: bool = True, ignore_exceptions: bool = False,
catch_exceptions: bool = None, inlet_concurrency: int = 9999, immedi-
ate_transfer: bool = True, processors: Union[callable, List[callable]] =
None, groupers: Union[callable, List[callable]] = None, name=None)

databay.link.Link

Link in the relationship graph. Use this class to define relationships between inlets and outlets.

Parameters

• inlets (Inlet or list[Inlet]) – inlets to add to this link.

• outlets (Outlet or list[Outlet]) – outlets to add to this link.

66 Chapter 2. Features

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

databay, Release 0.3.0

• interval (Union[datetime.timedelta, int, float]) – Expects
datetime.timedelta. Alternatively, you can provide int or float which
will be coerced explicitly to datetime.timedelta.seconds.

• tags (Union[str, List[str]]) – List of tags of this link. []

• copy_records (bool) – Whether to copy records before passing them to outlets. True

• ignore_exceptions (bool) – Whether exceptions in inlets and outlets should be
logged and ignored, or raised. True

• inlet_concurrency (int) – How many inlets are allowed to execute concurrently.
9999

• immediate_transfer (bool) – Whether governing planners that have
BasePlanner.immediate_transfer set to True should execute this link’s
transfer once immediately upon starting. True

• processors (callable or list[callable]) – Processors of this link. None

• groupers (callable or list[callable]) – groupers of this link. None

inlets(self)→ List[Inlet]
property

Inlets handled by this link.

Returns list[Inlet]

add_inlets(self, inlets: Union[Inlet, List[Inlet]])
Add inlets to this link. Inlets must be of type Inlet and not currently added to this link.

Parameters inlets (Inlet or list[Inlet]) – inlets to add to this link

Raises InvalidNodeError if this link already contains any of the inlets being added.

remove_inlets(self, inlets: Union[Inlet, List[Inlet]])
Remove inlets from this link.

Parameters inlets (Inlet or list[Inlet]) – inlets to remove from this link

Raises InvalidNodeError if this link doesn’t contain any of the inlets being removed.

outlets(self)→ List[Outlet]
property

Outlets handled by this link.

Returns list[Outlet]

add_outlets(self, outlets: Union[Outlet, List[Outlet]])
Add outlets to this link. Outlets must be of type Outlet and not currently added to this link.

Parameters outlets (Outlet or list[Outlet]) – outlets to add to this link

Raises InvalidNodeError if this link already contains any of the outlets being added.

remove_outlets(self, outlets: Union[Outlet, List[Outlet]])
Remove outlets from this link.

Parameters outlets (Outlet or list[Outlet]) – outlets to remove from this link

Raises InvalidNodeError if this link doesn’t contain any of the outlets being removed.

interval(self)→ datetime.timedelta
property

2.5. Databay API Reference 67

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/datetime.html#datetime.timedelta

databay, Release 0.3.0

Frequency at which this link should transfer.

Returns interval object

Return type datetime.timedelta

set_job(self, job)

Parameters job (Any) – specify the job this link is executed with.

job(self)→ Any
property

The job this link is executed with. Job should persist between link transfers. None

Returns Job this link is executed with.

name(self)→ str
property

Deprecated in 0.2.0, will be removed in 1.0. Use Link.tags instead.

Name of this Link, equivalent to first tag of this link.

Returns Name of this link

Return type str

tags(self)→ List[str]
property

The tags of this link. []

Returns Tags of this link

Return type List[str]

transfer(self)
Execute one transfer on this link. This will run through all inlets querying them for data, then pass that
data to all outlets.

See Link transfer to learn more about the transfer.

on_start(self)
Called when the governing planner is about to start. Calls try_start on all inlets and outlets of this
link.

If an inlet or outlet is present in multiple links its on_start will only be called once by whichever link
executes first.

on_shutdown(self)
Called just after the governing planner has shutdown. Calls try_shutdown on all inlets and outlets of
this link.

If an inlet or outlet is present in multiple links its on_shutdown will only be called once by whichever link
executes first.

68 Chapter 2. Features

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

databay, Release 0.3.0

2.5.10 databay.outlet

See also:

• Extending Outlets to learn how to extend this class correctly.

• Inlet representing the corresponding input of the data stream.

class databay.outlet.Outlet(processors: Union[callable, List[callable]] = None)
databay.outlet.Outlet

Abstract class representing an output of the data stream.

Parameters processors (callable or list[callable]) – Processors of this outlet. None

Bases: abc.ABC

push(self, records: List[Record], update: da.Update)
abstractmethod

Push received data.

Override this method to define how this outlet will handle received data.

Parameters

• records (list[Record]) – List of records generated by inlets. Each top-level element of
this array corresponds to one inlet that successfully returned data. Note that inlets could
return arrays too, making this a nested array.

• update (Update) – Update object representing the particular Link transfer.

try_start(self)
Wrapper around on_start call that will ensure it only gets executed once.

on_start(self)
Called once per outlet just before the governing planner is about to start.

Override this method to provide starting functionality on this outlet.

try_shutdown(self)
Wrapper around on_shutdown call that will ensure it only gets executed once.

on_shutdown(self)
Called once per outlet just after the governing planner has shutdown.

Override this method to provide shutdown functionality on this outlet.

active(self)
property

Whether this outlet is active and ready to push. This variable is set automatically to True on start and to
False on shutdown. False

Return type bool

2.5. Databay API Reference 69

https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/functions.html#bool

databay, Release 0.3.0

2.5.11 databay.record

class databay.record.Record(payload, metadata: dict = None)
databay.record.Record

Data structure representing the data passed between inlets and outlets.

Warning: You should prefer Inlet.new_record() function over instantiating this class directly.

Parameters

• payload (Any) – Data contained by this record.

• metadata (dict) – Metadata attached to this record None (Set to empty dict if not
provided)

payload(self)→ dict
property

Returns Data stored in this record.

Return type Any

metadata(self)→ dict
property

Returns Metadata attached to this record.

Return type dict

70 Chapter 2. Features

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

databay, Release 0.3.0

2.6 Source Code

2.6.1 inlet

2.6.2 base_planner

2.6.3 errors

2.6.4 outlet

2.6.5 link

2.6.6 record

2.6.7 http_inlet

2.6.8 null_inlet

2.6.9 random_int_inlet

2.6.10 file_inlet

2.6.11 buffers

2.6.12 schedule_planner

2.6.13 aps_planner

2.6.14 inlet_tester

2.6.15 null_outlet

2.6.16 mongo_outlet

2.6.17 csv_outlet

2.6.18 print_outlet

2.6.19 file_outlet

2.6. Source Code 71

databay, Release 0.3.0

72 Chapter 2. Features

PYTHON MODULE INDEX

d
databay, 52
databay.base_planner, 63
databay.errors, 64
databay.inlet, 65
databay.inlets, 52
databay.inlets.file_inlet, 52
databay.inlets.http_inlet, 53
databay.inlets.null_inlet, 54
databay.inlets.random_int_inlet, 54
databay.link, 66
databay.misc, 55
databay.misc.inlet_tester, 55
databay.outlet, 69
databay.outlets, 56
databay.outlets.csv_outlet, 56
databay.outlets.file_outlet, 56
databay.outlets.mongo_outlet, 57
databay.outlets.null_outlet, 58
databay.outlets.print_outlet, 59
databay.planners, 59
databay.planners.aps_planner, 59
databay.planners.schedule_planner, 61
databay.record, 70
databay.support, 62
databay.support.buffers, 62

73

databay, Release 0.3.0

74 Python Module Index

INDEX

A
active() (databay.inlet.Inlet method), 66
active() (databay.outlet.Outlet method), 69
add_inlets() (databay.link.Link method), 67
add_links() (databay.base_planner.BasePlanner

method), 63
add_outlets() (databay.link.Link method), 67
APSPlanner (class in databay.planners.aps_planner),

60
ApsPlanner (class in databay.planners.aps_planner),

59

B
BasePlanner (class in databay.base_planner), 63
Buffer (class in databay.support.buffers), 62

C
connect() (databay.outlets.mongo_outlet.MongoOutlet

method), 58
CSV_FILE (databay.outlets.csv_outlet.CsvOutlet at-

tribute), 56
CsvOutlet (class in databay.outlets.csv_outlet), 56

D
databay

module, 52
databay.base_planner

module, 63
databay.errors

module, 64
databay.inlet

module, 65
databay.inlets

module, 52
databay.inlets.file_inlet

module, 52
databay.inlets.http_inlet

module, 53
databay.inlets.null_inlet

module, 54
databay.inlets.random_int_inlet

module, 54

databay.link
module, 66

databay.misc
module, 55

databay.misc.inlet_tester
module, 55

databay.outlet
module, 69

databay.outlets
module, 56

databay.outlets.csv_outlet
module, 56

databay.outlets.file_outlet
module, 56

databay.outlets.mongo_outlet
module, 57

databay.outlets.null_outlet
module, 58

databay.outlets.print_outlet
module, 59

databay.planners
module, 59

databay.planners.aps_planner
module, 59

databay.planners.schedule_planner
module, 61

databay.record
module, 70

databay.support
module, 62

databay.support.buffers
module, 62

disconnect() (databay.outlets.mongo_outlet.MongoOutlet
method), 58

E
ensure_connection() (in module

databay.outlets.mongo_outlet), 57

F
FILE (databay.inlets.file_inlet.FileInletMode attribute),

53

75

databay, Release 0.3.0

FILE_ENCODING (databay.outlets.file_outlet.FileOutlet
attribute), 56

FILE_MODE (databay.outlets.csv_outlet.CsvOutlet at-
tribute), 56

FILE_MODE (databay.outlets.file_outlet.FileOutlet at-
tribute), 56

FileInlet (class in databay.inlets.file_inlet), 53
FileInletMode (class in databay.inlets.file_inlet), 52
FileOutlet (class in databay.outlets.file_outlet), 56
FILEPATH (databay.outlets.file_outlet.FileOutlet at-

tribute), 56
for_each_inlet() (in module

databay.misc.inlet_tester), 55
force_transfer() (databay.base_planner.BasePlanner

method), 64

G
get_controllers() (databay.support.buffers.Buffer

method), 63
get_inlet() (databay.misc.inlet_tester.InletTester

method), 55

H
HttpInlet (class in databay.inlets.http_inlet), 53

I
ImplementationError, 64
Inlet (class in databay.inlet), 65
inlets() (databay.link.Link method), 67
InletTester (class in databay.misc.inlet_tester), 55
interval() (databay.link.Link method), 67
InvalidNodeError, 65

J
job() (databay.link.Link method), 68

L
LINE (databay.inlets.file_inlet.FileInletMode attribute),

53
Link (class in databay.link), 66
links() (databay.base_planner.BasePlanner method),

63

M
metadata() (databay.inlet.Inlet method), 65
metadata() (databay.record.Record method), 70
MissingLinkError, 64
module

databay, 52
databay.base_planner, 63
databay.errors, 64
databay.inlet, 65
databay.inlets, 52

databay.inlets.file_inlet, 52
databay.inlets.http_inlet, 53
databay.inlets.null_inlet, 54
databay.inlets.random_int_inlet, 54
databay.link, 66
databay.misc, 55
databay.misc.inlet_tester, 55
databay.outlet, 69
databay.outlets, 56
databay.outlets.csv_outlet, 56
databay.outlets.file_outlet, 56
databay.outlets.mongo_outlet, 57
databay.outlets.null_outlet, 58
databay.outlets.print_outlet, 59
databay.planners, 59
databay.planners.aps_planner, 59
databay.planners.schedule_planner,

61
databay.record, 70
databay.support, 62
databay.support.buffers, 62

MongoCollectionNotFound, 57
MONGODB_COLLECTION

(databay.outlets.mongo_outlet.MongoOutlet
attribute), 58

MongoOutlet (class in databay.outlets.mongo_outlet),
57

N
name() (databay.link.Link method), 68
new_record() (databay.inlet.Inlet method), 65
NullInlet (class in databay.inlets.null_inlet), 54
NullOutlet (class in databay.outlets.null_outlet), 58

O
on_shutdown() (databay.inlet.Inlet method), 66
on_shutdown() (databay.inlets.file_inlet.FileInlet

method), 53
on_shutdown() (databay.link.Link method), 68
on_shutdown() (databay.outlet.Outlet method), 69
on_shutdown() (databay.outlets.mongo_outlet.MongoOutlet

method), 58
on_start() (databay.inlet.Inlet method), 66
on_start() (databay.inlets.file_inlet.FileInlet

method), 53
on_start() (databay.link.Link method), 68
on_start() (databay.outlet.Outlet method), 69
on_start() (databay.outlets.mongo_outlet.MongoOutlet

method), 58
Outlet (class in databay.outlet), 69
outlets() (databay.link.Link method), 67

P
pause() (databay.planners.aps_planner.ApsPlanner

76 Index

databay, Release 0.3.0

method), 60
payload() (databay.record.Record method), 70
PrintOutlet (class in databay.outlets.print_outlet),

59
pull() (databay.inlet.Inlet method), 65
pull() (databay.inlets.file_inlet.FileInlet method), 53
pull() (databay.inlets.http_inlet.HttpInlet method), 54
pull() (databay.inlets.null_inlet.NullInlet method), 54
pull() (databay.inlets.random_int_inlet.RandomIntInlet

method), 54
purge() (databay.base_planner.BasePlanner method),

64
purge() (databay.planners.aps_planner.ApsPlanner

method), 60
push() (databay.outlet.Outlet method), 69
push() (databay.outlets.csv_outlet.CsvOutlet method),

56
push() (databay.outlets.file_outlet.FileOutlet method),

57
push() (databay.outlets.mongo_outlet.MongoOutlet

method), 58
push() (databay.outlets.null_outlet.NullOutlet

method), 58
push() (databay.outlets.print_outlet.PrintOutlet

method), 59

R
RandomIntInlet (class in

databay.inlets.random_int_inlet), 54
Record (class in databay.record), 70
refresh_interval()

(databay.planners.schedule_planner.SchedulePlanner
method), 62

remove_inlets() (databay.link.Link method), 67
remove_links() (databay.base_planner.BasePlanner

method), 64
remove_outlets() (databay.link.Link method), 67
reset() (databay.support.buffers.Buffer method), 63
resume() (databay.planners.aps_planner.ApsPlanner

method), 60
running() (databay.base_planner.BasePlanner

method), 64
running() (databay.planners.aps_planner.ApsPlanner

method), 60
running() (databay.planners.schedule_planner.SchedulePlanner

method), 62

S
ScheduleIntervalError, 61
SchedulePlanner (class in

databay.planners.schedule_planner), 61
set_job() (databay.link.Link method), 68
setUp() (databay.misc.inlet_tester.InletTester method),

55

shutdown() (databay.base_planner.BasePlanner
method), 64

shutdown() (databay.planners.aps_planner.ApsPlanner
method), 60

shutdown() (databay.planners.schedule_planner.SchedulePlanner
method), 62

start() (databay.base_planner.BasePlanner method),
64

start() (databay.planners.aps_planner.ApsPlanner
method), 60

start() (databay.planners.schedule_planner.SchedulePlanner
method), 62

T
tags() (databay.link.Link method), 68
test_dont_read_metadata()

(databay.misc.inlet_tester.InletTester method),
55

test_new_record()
(databay.misc.inlet_tester.InletTester method),
55

test_new_record_override_global()
(databay.misc.inlet_tester.InletTester method),
55

test_pull() (databay.misc.inlet_tester.InletTester
method), 55

transfer() (databay.link.Link method), 68
try_shutdown() (databay.inlet.Inlet method), 66
try_shutdown() (databay.outlet.Outlet method), 69
try_start() (databay.inlet.Inlet method), 66
try_start() (databay.outlet.Outlet method), 69

U
Update (class in databay.link), 66

Index 77

	GitHub Page
	Features
	Python Module Index
	Index

